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Abstract
Tracking the head and hand in real-time are important tasks for developing an intuitive
interaction system. We present a system for robust probabilistic tracking that integrates
face detection, face and hand color tracking and foot tracking in a uniform way by using
particle filters. The advantages of different cues like motion, color and face detection
are combined to yield robust 2D and 3D position estimates in spite of difficult varying
lighting conditions and cluttered background. The system enables a user to navigate
in the virtual scene by walking around and pointing towards objects by a simple hand
gesture. The environment is a 3-sided CAVE with 1-sided stereo back projection.

1. Introduction

Fig. 1. The interaction area

Interacting with virtual environments is be-
coming increasingly important. Spatially im-
mersive displays offer a comprehensive way
to visualize and surround a person with a
virtual environment, e.g. the blue-c system
[4]. For a correct perspective visualization the
user’s head position must be known at all
times. The goal in our environment is to give
the user the possibility to interact with the vir-
tual environment in an intuitive way without the need to wear special hardware, but
simply by hand gestures or by walking around. Tracking the user’s head and hand po-
sitions in real-time is therefore a necessary task for developing an intuitive interaction
system. We present a system which enables the user to navigate in a scene simply by
walking around, allowing other persons to stand in the cluttered background. The image
processing and the position estimation of the person’s head and hand is based on prob-
abilistic methods using Bayesian estimation. In addition we rely on standard hardware,
i.e. low cost pan-tilt-zoom cameras. A general problem in interaction environments is,
that the interaction area should be well lighted for better camera images with less noise,
while the display screens should not receive any additional light. The compromise be-
tween both is usually a rather dimly lighted environment, as shown in figure (1), where
the displayed scene is clearly visible in spite of the light from the ceiling.

Another problem to deal with is, that the lighting varies rapidly in our environment
as a certain amount of light is reflected from the displays and changes when the dis-
played scene changes. A three sided cave gives the opportunity for spectators to observe
the scene from the background. However, this gives another problem to deal with as the
background becomes cluttered and incorporates additional persons, who may distract
the face tracking.



A lot of work is devoted to tracking peoples’ faces and hands in image sequences.
Color cues are often used to localize or detect faces by their skin color. In [12] an
overview of face detection methods is given, which also includes a part about skin
color. Face tracking methods can basically be divided in Bayesian approaches and non-
Bayesian. Bayesian approaches often include particle systems or Monte Carlo methods
like [6, 8]. A recent work on non-Bayesian face and hand tracking [1] uses hysteresis
like thresholding of skin color to detect and track both hands and the face by assuming
ellipsoidal projections in monocular images.

The main contribution of this work is the presentation of the system and the inte-
gration of different sensors within a unifying probabilistic framework. Due to the inte-
gration of multiple cues and the stochastic nature of the sensor fusion we achieve very
robust position estimates. The system is designed to be easily extendable to increase the
accuracy and robustness with more cameras or other cues.

2. System Overview
The interaction environment consists of a twelve square meters area, which is sur-
rounded by 3 displays, as shown in figure 1. The central display is used for stereo visual-
ization with polarized filters. The area is observed by three cameras,
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Fig. 2. Data transmission in the system

one static camera at the ceiling and two
cameras able to pan, tilt and zoom, which
are mounted at the left and right side of the
center display. The data flow and the con-
nections of all parts of the system are shown
in figure 2. On the right side are the face and
foot tracking modules for the image pro-
cessing. The results are fused by the sensor
fusion module. On the left and bottom side
are the rendering and audio modules. The
interaction server receives the head posi-
tion and adapts the scene view accordingly.
The scene data is sent to the display servers,
which are connected to one projector each. The scene graph and the correct perspective
visualization for a multi-display environment is part of the OpenSG library [9].

3. Foot Tracking
The user’s foot positions are estimated based on a difference image algorithm with an
adaptive threshold. This approach was already described in [3]. The camera mounted at
the ceiling views the planar floor, therefore we can use four known points on the floor
to compute a homography Hfloor that relates ground floor scene coordinates and image
coordinates. A segmented image with the user as foreground is computed by thresh-
olding a difference image. To deal with the varying lighting conditions the threshold is
adapted to the noise and the mean in the difference image. Therefore the segmentation
is invariant to small changes in the image brightness. It can be assumed that the feet
move on a plane, namely the floor, so the above mentioned homography Hfloor from
the camera coordinates to the floor coordinates is applied to get the position of the user’s
feet on the floor.



4. Probabilistic Combination of Measurements
Particle filters are used in this work for face tracking and in the sensor fusion mod-
ule. For details we refer to Isard [6], who introduced particle filters to computer vision
tracking tasks in 1998, or to [2] for an introduction. Particle filters estimate the con-
ditional probability p(θt|Mt) that a system is in a specific state θt at time t given
measurements Mt. The posterior p(θt|Mt) is calculated from the likelihood probabil-
ity p(Mt|θt), which is the probability to make measurement Mt given that the system
is in state θt, this probability will be called the measurement probability in this work.
When applying a particle filter to a specific problem the sensible task is how to model
the measurement probability and the transition probability (prediction), which reflects
the system’s motion model and the increase in uncertainty without measurements.
Combining different sensor measurements In this work the probability that the system
is in a specific state is assumed to be proportional to the probability that this position in
the state space is occupied by the object of interest. Also we derive the inverse measure-
ment model instead of directly taking p(M |θi). The inverse model gives the probability,
that a specific state space belongs to the object or is occupied by that object. The mea-
surement probabilities of our sensors are therefore designed to give a probability that
the specific state space is occupied. That means if a sensor’s measurement does not give
any information for one position the probability should be 50%, while a probability of
95% indicates a very likely occupied state space and 10% means it is very likely unoc-
cupied. For the probability that a specific state space is occupied we write p(φ[θ]) and
that it is not occupied p(nφ[θ]). By definition p(φ[θ]) + p(nφ[θ]) = 1. In the latter
p(φ) is written instead of p(φ[θ]) as only one position θ is discussed in this section.

To combine two measurements at the same position p(M 1

t |φ) and p(M2

t |φ), we take
the joint probability p(φ|M 1

t ∧ M2

t ). We will give here only the resulting combining
formula. For the derivation see the work about occupancy grids of Moravec, e.g. [7]. If
we assume M1

t and M2

t to be statistically independent, the combining formula can be
derived from Bayes’ law:
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t |φ)

p(M1

t |nφ)

p(M2

t |φ)

p(M2

t |nφ)

p(nφ)

p(φ)
and p(φ|M1

t ∧ M2

t ) =
f(φ)

1 + f(φ)
(1)

where p(φ) is a possible known prior probability that φ is occupied by the object, in our
work 50% for all states.
Modeling sensor characteristics When combining different sensor measurements,
whose measurement probabilities where designed separately, it was seen to be very
practical to alter them in the following way. To model a sensor’s ability of how well it
can detect the object of interest in comparison to other competing sensors, the original
measurement probability p(M i

t |φ[θt]) ∈ [0..1] of sensor i is shifted and scaled:

p̃(M i
t |φ[θt]) = (1 − ri

fp − ri
fn)p(M i

t |φ[θt]) + ri
fn (2)

The probability p̃(M i
t |φ[θt]) is in [ri

fn..(1 − ri
fp)]. The values ri

fn, ri
fp may be inter-

preted like the false positive and false negative detection rates of the specific sensor. If
a sensor is more important or there is more belief into the measurements of a sensor
these values will be lower than for a less important sensor.



5. Face Tracking
Face tracking in our system utilizes two separate methods, namely face detection [10]
and a color histogram tracking algorithm [8]. The detection part is robust against light-
ing changes in brightness and color, but detects faces more reliably if seen directly from
the front. To track the user’s face, when he doesn’t look in the direction of the camera,
the detection part is combined with a color histogram tracking approach.

Fig. 3. Particle distribution

To detect faces we use an implementation from
the OpenCV library [5], which comes with a
trained classifier for faces and worked well within
our environment. We optimized the detection
method for the special application of tracking by
applying the classifier not to the whole image in
different sizes, but only to the particles’ image po-
sition and sizes. This way we achieve a reduction
in computation time of 50% while keeping the de-
tection rate at the same level.

The color histogram tracking is similar to that
of Perez [8]. We optimized the histogram calcu-
lations by the use of an integral histogram image.
The integral histogram image holds at each pixel position the complete histogram from
the top left corner of the image up to the pixel position. That way a histogram from
(tlx, tly) to (brx, bry) can be computed by only for lookups in the integral histogram
image. Also the integral histogram can be computed very efficiently by incrementally
adding new pixels. See [11] for more details. The integral histogram image makes the
computation almost invariant with respect to the number of particles. Without the inte-
gral histogram more than 500 particles will slow the computation down too much for
real-time purposes. In [8] about 200 particles were used, while we can calculate 2000
histograms each frame and achieve more than 20 fps on a 3Ghz Pentium 4.

The combination of the color tracking and the face detection is just a matter of
calculating the joint probability p(θt|M

c
t ∧ Md

t ), where M
f
t is the color histogram

measurement and Md
t the detection. The false positive rate and the detection rate of the

face detection method is principally known from the training of the cascade. However
in our environment the detection quality is different, therefore we chose rd

fp = 0.02

and rd
fn = 0.2, the false negative rate, significantly higher. For the color histogram

probabilities we estimated from experiments rc
fp = 0.1 and rc

fn = 0.001. The false
positive rate is rather high, because all objects that have a skin color like appearance give
significant responses. Comparing the detection and the color histogram values, it can
be seen, that the detection method is given more importance for the ability to measure
where the face is, while the the color histogram method is given more importance for
the ability to measure where the face not is. The transition probability used in face
tracking is a second order motion model, which involves the position and velocity of
the object. The final estimate of the face’s position is calculated as the weighted mean
of the particles’ positions. Using the known projection matrix of the camera a viewing
ray is calculated and a distance to the face is derived from the face size in the image.
Together with the weighted variance this is transmitted to the sensor fusion module.



The cameras follow the user by panning and tilting, such that the user is always
visible in the middle part of the image. The cameras can not be moved constantly, as
their response time is too high. It takes up to 250ms from sending a movement command
until the cameras start moving. Therefore the cameras only move if the localized face
leaves the innermost central image area, which is set to be half the image size.

Each time a camera moves, the particles have to be moved accordingly. To change
the particles’ positions, the camera’s movement is predicted for each frame, calculated
from the response time and the rotation speed of the camera.

6. Sensor Fusion and 3D Position Estimation
The basic idea of the sensor fusion is to combine different sensor data dependent on their
certainties. For example a camera that views the face from the side, may be very likely

foot

Fig. 4. 3D position proba-
bility

distracted by the background clutter. To achieve this it
is necessary to detect situations where one cue, e.g. the
color histogram in the face tracking, gives no or multiple
position estimates. Instead of explicitly describing these
situations, we handle the advantages and disadvantages
of different cues implicitly by the probabilistic approach
described here. As the face trackers use a particle filter
to evaluate the face position in the image, a value for the
certainty of each face tracker is given by the weighted
variance, that is transmitted together with the viewing ray
to the fusion module.

In the sensor fusion module the final 3D head posi-
tion of the user is estimated by taking into account the
measurements from the foot and face trackers. Again a
particle filter is used to fuse the different measurements and evaluate a 3D position,
which has following advantages:

– The accuracy of sensor readings is taken into account.
– The history of previous measurement’s is accumulated over time by the Bayesian

nature of the particle filter.
– Different sensors with arbitrary probability functions can be easily combined.
– Multiple hypotheses are tracked if sensors do not agree.

The sensor fusion module estimates a new 3D position each time new 2D estimates
arrive. The viewing rays from the face trackers are modeled as a Gaussian distribution,
that is extended very far in depth and has a variance perpendicular to the depth direction
equal to the weighted variance estimated in the 2D face tracking module. The Gaussians
for the viewing rays as seen from the top are visible in figure (4, which shows a slice of
the probabilities space in 1.70m height, not a projection. The user’s head was in about
that height, therefore the rays are visible in the slice. Based on the 2D foot position it
can be assumed, that the head is somewhere above it, so we model this measurement as
a Gaussian that is extended in height and extended parallel to the floor according to the
known inaccuracy of the foot tracker. The blob on the left in figure (4) is a slice of the
Gaussian representing the foot position, which means that the left foot was detected by
the foot tracker.



Additionally, the Gaussians, which model the single measurement probabilities from
the face and foot trackers, are scaled and shifted to take the different characteristics of
the sensors into account. The normalization factor of the Gaussian is altered, such that
the resulting values are in [0..1] for a user defined minimum variance. For higher vari-
ances, that reflect larger uncertainties, the Gaussian is shifted and scaled, such that the
resulting values are centered around 0.5. This way we can apply the modeling of the
sensor characteristics from section 4. We know from experiments, that the head position
derived from the foot position is not very accurate, but it is very robust, that means the
false positive and false negative rate is very low rf p = rfn = 0.001. This is basically
because there is no clutter for the overhead camera to distract it, as it views the floor
from the top. The face trackers’ estimates are much more accurate, which is modeled
by a very narrow Gaussian. On the other hand they sometimes get distracted by other
objects in the background, therefore we set their rfp = rfn = 0.1.

7. Hand Tracking
An estimate of the user’s hand position is necessary for interaction tasks like pointing
gesture detection or arm movement. In addition to the face we track one of the user’s
hands by similar techniques. The hand is assumed to have the same skin color as the
face. Therefore the median hue value of the detected face is taken for color blob tracking
with a particle system.

The movement of people always includes movement of their hands (with regard to
the world coordinate system). Therefore we also take into account motion cues, which
stabilizes the tracking for cluttered background with skin colored objects. Both cues are
scale and rotation invariant and are therefore well suited for fast and robust tracking.

The size of the projected hand in the image is assumed to be approximately half the
size of the face in width and height. Therefore the state for the particle system is just the
image position θ = (x, y). This assumption reduces the necessary amount of particles
significantly in contrast to a histogram tracking method with variable sizes. The blob
size is updated in each frame, depending on the detected face size. As the position of
the face is known, it is omitted for the hand tracking. The measurement probability for
the hand color blob tracking is the sum of similar colors over the assumed hand size in
the image, while the similarity is a sigmoidal weighted Gaussian difference between the
current pixel’s hue value and the mean hue value of the skin color. The variance of the
Gaussian is the assumed variance of the skin color and the sigmoid function is centered
at an assumed minimum saturation.

The motion cue is computed as the difference of the current image with the mean
of the last n images and summed over the expected hand size. Both probabilities are
combined by calculating the joint probability as above.

The final 2D estimate of the hand’s position is calculated as the weighted mean and
is transmitted together with the weighted variance to the 3D position estimation module.
The 3D position estimate is performed in the same way as for the head, but only from
two sensors.

8. Results
The processing of the head position requires sensor data from the face and the foot
tracker. New estimates arrive in about 20-25Hz, such that each 50ms a new 3D position



Fig. 5. Left:Measured z-position of the head (depth) Right: Measured x-position

can be estimated. The used image size is 320x240 for all modules. The rendering part
is running asynchronously and its speed depends only on the scene complexity.
The user can move around in the virtual scene by walking to the edges of the interaction
area. Standing at the front means moving forward, at the left side means rotating left
etc. with a center area in the middle, which causes no movement. In our experiments
we had about 20 persons, who didn’t know the system, navigating in the scene, while
the other 19 were sitting in the background watching. Most of them understood the way
of moving very fast without much explanation.
To measure the accuracy of the head position estimates a person had to place its head at
three known positions in space. The first was standing straight, with the eyes at 1.78m,
the second at 1.27m and the third at 0.98m. Figure (6) shows the estimated height
with the weighted variance of the particle system, which reflects the certainty of the

Fig. 6. Measured height (y-position)

estimated height. The ground truth was mea-
sured by hand, therefore an uncertainty of
3cm must be assumed. The height estimated
by the system is within that uncertainty.
Around frame 150, the variance gets very
high, due to lost tracking of the face. About
30 frames later the system recovers and mea-
sures the height of 0.98m correctly.
Figure (5) shows the estimated distance to the
front display and the estimated position par-
allel to the display. The head’s position was
measured during a sequence where the user
followed a rectangular path beginning at 2.6m distance (frame 0-150), walking to the
display up to one meter (frame 170-210), walking parallel to it (frame 210-250), back
to 2.6m distance (frame 250-330) and finally to the center before the display at 2.6m
distance. As can be seen in the figures, the depth estimation is not as accurate as in the
other directions. This is due to the setup of the 3 cameras, which are all looking from
the front into the interaction space.

In addition to the user’s head position the position of one hand is estimated, while
the other hand should not be visible. A pointing ray is computed as the difference be-
tween head and hand position and is projected into the virtual scene. The point where



the ray is hitting the scene is marked with a yellow ball as shown in figure (1). Please
note, that the pointing ray is not the extension of the arm, but the line of sight over the
fingertip. However, due to the nature of the blob tracking method and the small number
of 2D hand estimates (two) the estimated 3D hand position was seen to be too noisy
and not accurate enough, while the hand was tracked very robustly in the images. Be-
cause the 3D position is triangulated only from two rays, small inaccuracies in a single
estimate have large effects on the 3D estimate. For manipulation of small objects in the
scene, the accuracy of the hand estimation is not good enough. An estimation of the
fingertip position as seen from the top would overcome this problem.

9. Conclusion and Outlook
We presented a system for immersive exploration of a virtual scene, which tracks the
user’s feet, head and one hand by the use of standard cameras and standard lighting in
real-time. The combination of different tracking and detection methods within a prob-
abilistic sensor fusion framework leads to robust and accurate head estimation even
under difficult lighting conditions and cluttered background, where other persons are
allowed to watch the user, who can point towards specific objects in the scene by a
simple hand gesture. Future work has to increase the accuracy of the depth estimation
and of the hand position estimate, which can be easily achieved by adding additional
cameras. For example an additional camera at the ceiling could provide such an esti-
mate. The hand tracking should also be supported by at least one additional camera to
increase the accuracy, such that object manipulation gets possible.

References

1. Antonis A. Argyros and Manolis I.A. Lourakis. Real time tracking of multiple skin-colored
objects with a possibly moving camera. In Proc. ECCV, volume 3, pages 368–379, Prague,
Czech Republic, May 2004. Springer-Verlag.

2. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-
line nonlinear/non-gaussian bayesian tracking. In IEEE Transactions on Signal Processing,
volume 50(2), pages 174–188, Feb. 2002.

3. Daniel Grest, Jan-Michael Frahm, and Reinhard Koch. A color similarity measure for robust
shadow removal in real time. In Proc. of VMV, Munich, Germany, Nov. 2003.

4. Markus Gross and al. blue-c: A spatially immersive display and 3d video portal for telepres-
ence. In Proc. of SIGGRAPH, pages 819–827, San Diego, USA, July 2003.

5. Intel. openCV: Open source Computer Vision library. http://www.sourceforge.net/opencv/.
6. Michael Isard and Andrew Blake. ICONDENSATION: Unifying low-level and high-level

tracking in a stochastic framework. Lecture Notes in Computer Science, 1998.
7. Hans P. Moravec. Certainty grids for sensor fusion in mobile robots. In Nato Asi Series F:

Sensor Devices and Systems for Robotics, volume 52. Springer Verlag, 1989.
8. P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-based probabilistic tracking. In A. Hey-

den et al., editor, Proc. of ECCV, LNCS 2350, pages 661–675, 2002.
9. D. Reiners, G. Voss, M. Roth, and al. OpenSceneGraph library (OpenSG). www.opensg.org.

10. Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, 2001.

11. F. Woelk, I. Schiller, and R. Koch. An airborne bayesian color tracking system. Las Vegas,
USA, June 2005.

12. Ming-Hsuan Yang, David J. Kriegman, and Narendra Ahuja. Detecting faces in images: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1), Jan. 2002.


