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Abstract. Accurate markerless motion capture systems rely on images
that allow segmentation of the person in the foreground. While the ac-
curacy of such approaches is comparable to marker based systems, the
segmentation step makes strong restrictions to the capture environment,
e.g. homogenous clothing or background, constant lighting etc. In our ap-
proach a template model is fitted to images by an Analysis-by-Synthesis
method, which doesn’t need explicit segmentation or homogenous cloth-
ing and gives reliable results even with non-static cluttered background.
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1 Introduction

Motion capture and body pose estimation are very important tasks in many
applications. Motion capture products used in the film industry or for computer
games are usually marker based to achieve high quality and fast processing. A
lot of research is devoted to make markerless motion capture applicable. Accu-
rate markerless systems rely on images that allow segmentation of the person in
the foreground. While the accuracy of such approaches is comparable to marker
based systems [13, 5], the segmentation step makes strong restrictions to the
capture environment, e.g. homogenous clothing or background, constant light-
ing, camera setups that cover a complete circular view on the person etc. Most
systems create first a visual hull from the segmented images and fit a template
model afterwards by minimizing an objective function.

Our approach also fits a template model by minimizing correspondences, how-
ever it doesn’t need explicit segmentation or homogenous clothing and gives re-
liable results even with non-static cluttered background. Additionally, less views
are sufficient, as the underlying motion and body model is directly incorporated
in the image processing step. While motion capture from stereo depth images
already allows such complex environments [8], we present here results from a
single camera view, that show the efficiency of our approach even with complex
movements.

Capturing human motion by pose estimation of an articulated object is
done in many approaches and is motivated from inverse kinematic problems
in robotics[10]. Solving the estimation problem by optimization of an objective
function is also very common [13, 9, 11]. Silhouette information is usually part of
this function, that tries to minimize the difference between the model silhouette
and the silhouette of the real person either by background segmentation [13, 11]
or image gradient [12, 9].



Matching feature points from one image to the next in a sequence is also a
useful cue to estimate the body pose as done in [3]. However this cue alone will
introduce drift, because an error in the estimation accumulates over time.

The above mentioned approaches to markerless motion capture all have in
common, that the underlying movement capabilities of a human (body parts
are connected by joints) are formulated directly in the optimization, while the
degrees of freedom and the projection model differ. In [3] a scaled orthographic
projection approximates the full perspective camera model and in [13] the min-
imization of 2D image point distances is approximated by 3D-line 3D-point dis-
tances.

While some kind of template body model is common in most approaches,
adaption of body part sizes of these template during the motion estimation is also
possible like in [12]. Others assume the body model is known and fitted offline
beforehand. This reduces the degrees of freedom (DOF) for the optimization
significantly and allows fast and accurate estimation. In most applications it is
possible to measure the size of the person before the capturing, like in sport
motion analysis or in capturing motion for movies or video games.

Our approach incorporates silhouette information and point tracking using
the full perspective camera model. Different cues result in different types of
optimization equations. Our method minimizes errors, where they are observed
and makes no approximations to the movement or projection model. Additionally
it allows analytical derivations of the optimization function, which speeds up
the calculation by more accuracy and less function evaluations than numerical
derivatives. Therefore the approach is fast enough for real-time applications in
the near future as we process images already in less than a second.

2 Body and Movement Model

Depending on the kind of work different body models are used for the estimation
process. The models range from simple stick figures [3] over models consisting
of scalable spheres (meta-balls) [12] to linear blend skinned models [2].

Fig. 1. The body model with ro-
tation axes shown as arrows

We use models with movement capabilities
as defined in the MPEG4 standard. However
not all 180 DOF are estimated, but a subset of
up to 30 parameters. The MPEG4 description
allows a simple change of body models and re-
animation of other models with the captured
motion data. An example of one model used
in this work is shown in (1). The model for a
specific person is obtained by silhouette fitting
of a template model as described in [7].

The MPEG4 body model is a mixture of
articulated objects. The movement of a point,
e.g. on the hand, may therefore be expressed
as a concatenation of rotations [8]. As the ro-
tation axes are known, e.g. the flexion of the
elbow, the rotation has only one degree of freedom (DOF), the angle around



that axis. In addition to the joint angles there are 6 DOF for the position and
orientation of the object within the global world coordinate frame. For an artic-
ulated object with p joints the transformation may be written according to [8]
as:

f(θ, x) =(θx, θy, θz)
T + (Rx(θα) ◦ Ry(θβ) ◦ Rz(θγ) ◦ Rω,q(θ1) ◦ · · ◦Rω,q(θp)) (x)

(1)
where (θx, θy, θz)

T is the global translation, Rx, Ry, Rz are the rotations around
the global x, y, z-axes with Euler angles α, β, γ and Rω,q(θi), i ∈ {1..p} denotes
the rotation around the known axis with angle θi. The axis is described by the
normal vector ωi and the point qi on the axis with closest distance to the origin.

Equation (1) gives the position of a point x on a specific segment of the body
(e.g. the hand) with respect to joint angles θ and an initial body pose.

The first derivatives of f(θ, x) with respect to θ give the Jacobian matrix
Jki = ∂fk

∂θi
. The Jacobian for the movement of the point x on an articulated

object is
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with the simplified derivative at zero:
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where pi is an arbitrary point on the rotation axis. The term ωi×pi is also called
the momentum. The simplified derivative at zero is valid, if relative transforms
in each iteration step of the Nonlinear Least Squares are calculated and if all
axes and corresponding point pairs are given in world coordinates.

2.1 Projection

If the point x = (xx, xy, xz)
T is observed by a pin-hole camera and the camera

coordinate system is in alignment with the world coordinate system, the camera
projection may be written as:
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)

(4)

where sx, sy are the pixel scale (focal length) of the camera in x- and y-direction,
and (cx, cy)T is the center of projection in camera coordinates.
We now combine f(θ, x) and p(x) by writing g(sx, sy, cx, cy, θ, x) = p(f(θ, x)).
The partial derivatives of g can now be easily computed using the chain rule.
The resulting Jacobian reads as follows:
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The partial derivatives ∂f
∂θi

, i ∈ {α, β, γ, 1, .., p} are given in equation (2) and

f(θ) = (fx, fy, fz)
T is short for f(θ, x). Note that f(θ) simplifies to x, if θ is

zero.
We minimize the distance between the projected 3D model point with its

corresponding 2D image point, while in [13] the 3D-difference of the viewing ray
and its corresponding 3D point is minimized. The minimization in 3D space is
not optimal, if the observed image positions are disturbed by noise, as shown in
[15], because for 3D points, which are farther away from the camera, the error in
the optimization will be larger as for points nearer to the camera, which leads to
a biased pose estimate due to the least squares solution. In [15] a scaling value
was introduced, which down weights correspondences according to their distance
to the camera, which is in fact very close to the equation (5).

Another relation exists to the work of [1], where the first 10 partial deriva-
tives of Equation (5) are used for estimating the internal and external camera
parameters by nonlinear optimization. This allows full camera calibration from
(at best) five 2D-3D correspondences or pose from 3 correspondences. An im-
plementation of it with an extension to the Levenberg-Marquardt algorithm[4],
which ensures an error decrease in each iteration, is available for public in our
open-source C++ library [6].

3 Estimating Body Pose

Assume a person, whose body model is known, is observed by a pinhole camera
with known internal parameters at some time t resulting in an image It. Let
X = {x0, x1, .., xN} be the set of model points and X ′ = {x′

0
, x′

1
, .., x′

N} the
set of their projected image points. Additionally assume that the pose of the
person is known at that time, such that the projected body model aligns with
the observed image as in the second image of figure 6. If the person now moves
a little and an image It+1 is taken, it is possible to capture the movement by
estimating the relative joint angles of the body between the frames It and It+1.
If the image points X̂ ′ in It+1 that correspond to X ′ are found, e.g. by some
matching algorithm, the pose estimation problem is to find the parameters θ̂

that best fit the transformed and projected model points to X̂ ′, which can be
formulated as follows:

θ̂ = arg min
θ

N
∑

i=1

∣

∣g(θ, xi) − x̂′

i

∣

∣

2
(7)

This problem is known as Nonlinear Least Squares and can be solved by Newton’s

Method [4]. We use the Gauss-Newton Method [4], which doesn’t require the the
second derivatives of g(θ, xi).

The solution is found by iteratively solving the following equation:



θt+1 = θt − (JT J)−1JT
(

G(θt, X) − X̂′

)

(8)

Here the Jacobian matrix J consists of all partial derivatives for all N points,
where the Jacobian for a single point is given in equation (5). In case of conver-
gence the final solution θ̂ is found.

To get the initial pose, the user has to position the model manually. Because
the depth is difficult to measure from a single view, markers on the floor give
the user helpful information, where to position the model. Small errors in the
manual positioning are not crucial, because the silhouette correspondences are
correcting small errors.

3.1 Tracking of Image Features
For the estimation from above it is necessary to have correspondences between
2D image points and 3D model points. These can be calculated by tracking 2D
features from one image to the next. Because we assume that the initial pose of
the person is known as in figure 6, it is possible to get the relation between the
image of the real person and the 3D model point by intersection of the feature’s
viewing ray and the 3D model surface using the known projection matrix. Then
the same feature point has to be found within the next image and gives the
necessary 2D image 3D model point correspondence. We use corners, which are

Fig. 2. Tracking of point features (Cross marks). Boxes indicate a tracked corner. The
movement of a corner over the last frames is shown as a black line.

tracked with the KLT feature tracker [14]. Tracking point features allows us
to capture motion, which wouldn’t be possible from the silhouette alone, e.g.
an arm moving in front of the body like in figure 2. However as also visible,
the motion estimation is not very accurate, because the assumption, that the
correspondence of model and image point is given by projection of the model
point, leads to an error accumulation over time. As visible the elbow position
drifts away to the left. To stabilize the estimation we combine the corner tracking
with silhouette information as described in the next section.

Because the movement of the arms and legs is usually larger than of the
torso, we distribute feature points equally on the body of the person, such that
there are enough correspondences for estimation of the arm joint angles. Limiting
the number and distributing the position of the tracked points is also necessary
for fast computation. We achieve this by projecting the 3D model into the real
image using OpenGL similar to [8], which gives directly the relation of feature
points and visible body segments. In this way we can distribute the feature points
equally over the visible segments.



4 Correspondences by Silhouette

Fig. 3. Correspondence
search along the normal.

To compensate the drift we add silhouette infor-
mation to our estimation. This is achieved by cal-
culating additional 2D-3D correspondences for the
model silhouette and the silhouette of the real per-
son. In contrast to [13] we don’t utilize explicit seg-
mentation of the images in fore- and background,
but use the predicted model silhouette to search
for corresponding points on the real silhouette.
Previous work like [9] already took this approach
by searching for a maximum grey value gradient in
the image in the vicinity of the model silhouette.
However we experienced that the gray value gradi-
ent alone gives often erroneous correspondences, especially if the background is
heavily cluttered and the person wears textured clothes.
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Fig. 4. The gradient (G(x)) and his-
togram (H(x)) values along the nor-
mal. Correct correspondence at 0.

Therefore we also take color infor-
mation into account. As the initial pose
is known, it is possible to calculate a
color histogram for each body segment.
We use the HSL color space to get
more brightness invariance. This refer-
ence histogram is then compared with a
histogram calculated over a small win-
dow on the searched normal. In figure 3
the normal is shown and the rectangu-
lar window, which is used for histogram
and gradient calculation. The expecta-
tion is, that the histogram difference
changes most rapidly on the point on
the normal of the correct correspondence, where the border between person and
background is. The type of combination function was chosen by analyzing the
developing of gradient and histogram values over 15 normals in different images.
The actual values of the combination were then evaluated experimentally trying
different values and counting the number of correct correspondences manually
for about 100 silhouette points in 4 different images.

A rather difficult case is shown in figure 4, which shows a plot of the maximum
search along the normal of figure 3. The grey value gradient G(x) is shown as
a solid line, the gradient of the histogram differences H(x) as points and the
combination with lines and points. As visible, the grey value gradient alone
would give a wrong correspondence, while the combination yields the correct
maximum at zero.

The correspondences found in this way could be integrated into the estima-
tion the same way as the correspondences from feature tracking. However, for
most silhouette parts a 2D-3D point correspondence isn’t correct, because of the
aperture problem. For parallel lines it isn’t possible to measure the displacement



in the direction of the lines. Therefore we use a formulation that only minimizes
the distance between the tangent at the model silhouette and the target silhou-
ette point, resulting in a 3D-point 2D-line correspondence as visible in figure 5.

Fig. 5. Silhouette corre-
spondences

For a single correspondence the minimization is

min
θ

[

(g(θ, x) − x′)T n − d
]2

(9)

where n is the normal vector on the tangent line
and d is the distance between both silhouettes,
which can be computed as d = (x̂′ − x′)n. The
point on the image silhouette x̂′ is the closest
point to x′ in direction of the normal. In this for-
mulation a movement of the point perpendicular
to the normal will not change the error. We calcu-
late the normal vector as the projected face nor-
mal of the triangle, which belongs to the point
x′.

For a set X with N points and projected image
points X′ the optimal solution is:

θ̂ = arg min
θ

N
∑

i=1

[

(g(θ, xi) − x′

i)
T ni − di

]2

This is again a Nonlinear Least Squares problem and can be solved as above
with the following Jacobian:

Jik = (
∂g(θ, xi)

∂θk

)T ni

Note that each of these correspondences gives one row in the Jacobian.
Equation (9) is an implicit description of a 2D line. The same formulation is

used in [3], where the normal of the line is the image gradient and the difference d

is the grey value difference. The equations for the articulated object are derived
using twists, but lead to the same equations and are also solved with the Gauss-

Newton method. However in [3] the perspective projection was approximated by
a scaled orthography.

5 Results

Correspondences from point tracking and from silhouette difference are combined
within the optimization by joining both correspondence sets together. Because
we estimate pose with different correspondences, weights are added in the Least
Squares steps. That way it is possible to ensure a similar influence of 3D-2D
point correspondences and 3D-point 2D-line correspondences.

In the following sequences 19 DOF were estimated. Five for the global posi-
tion and rotation (rotation back and forth is not estimated), one for abduction of
the whole shoulder complex, three for each shoulder, one for the elbow and two
for each leg (twisting and abduction). Additionally the estimation was damped
by a regularization term, such that a large change of joint angles in one iter-
ation is unlikely, if only a few correspondences affect the joint. This way no
correspondences for a segment lead to no change for that joint.



Fig. 6. Original image and estimated model pose with 19 DOF.

Figure 6 shows results for a simple movement, that consists of a rotation of
the upper body and stepping aside afterwards. The person is wearing a checkered
shirt that exhibits lots of disturbing gray value gradients. The estimated body
pose is shown in white as superimposed on the real camera image. As visible,
the movement could be captured successfully from a single camera view in spite
of the unknown cluttered background and the inhomogeneous clothing.

Results for a more complex movement for a different person are shown in
figure 7. The person is wearing a T-shirt and the background is non-static and
cluttered again. Movement between frames is quite large, because capturing was
done with 7 fps, while the person was moving at normal speed. Even though
the shoulder and the upper arm are completely hidden during some frames, the
movement could be captured correctly.

6 Conclusions

We showed how estimation of human movement can be derived from point trans-
formations of an articulated object. Our novel approach uses a full perspective
camera model and minimizes errors where they are observed, i.e. in the image
plane. That way we overcome limitations and approximations of previous work.
No explicit segmentation of the images is needed. Correct correspondences are
found in spite of cluttered non-static background and normal clothing. Motion
with 19 DOF could be estimated that even contained partially hidden body
parts. Movements parallel to the optical axis of the camera are not possible to
estimate accurately from a single view, e.g. movement of the arms back and
forth.

The estimation method is fast enough to fulfill real-time conditions in the
near future as processing of one frame is done in less than a second. Ongoing
work is to combine this approach with body pose estimation from depth images.
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Fig. 7. Original image and estimated sequence with 19 DOF.


