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Abstract

Marker-less motion capture systems usually rely on
a 3D skin and skeleton model of the observed per-
son. We present a system that is able to fit a tem-
plate MPEG4 body model to a person from multiple
views taken with a single camera. The person is ob-
served in 6 different postures. Based on contour dif-
ferences between model and person, a global non-
linear optimization method estimates the scale val-
ues of each body segment. Qualitative and quanti-
tative results for different persons show, that a good
fitting can be achieved in spite of the simple setup.

1. Introduction
Motion capture and body pose estimation are very
important tasks in many applications. Motion cap-
ture products used in the film industry or for com-
puter games are usually marker based to achieve
high quality and fast processing.

A lot of research is devoted to make marker-
less motion capture applicable. There are very dif-
ferent approaches using very different kind of in-
formation, e.g. tracking features, contour informa-
tion, color tracking, or depth data. An overview of
marker-less motion capture systems and algorithms
is given in [9].

Most motion capture systems and algorithms rely
on 3D skin and skeleton models of the person being
captured. Especially marker-less systems are in the
need for an at least rough model of the observed
person.

We present a system, which is able to construct
a 3D skin and skeleton model of a person by an-
alyzing images from a single camera. Assuming
a known static background, the person is captured
in 6 roughly predefined poses. A template model
is fitted to the person’s contour in the 6 images,
by scaling each body segment differently in size.
The Levenberg-Marquardt (LM) method is used to
find the scale values that minimize the difference

between the model’s projected contour and the per-
son’s segmented contour. The fitting for one pose is
visible in figure (1). On the left the segmented con-
tour is shown in grey, the middle image shows the
template model and on the right the fitting result.
Additional 3D pose parameters like joint angles and
the transformation between model and camera are
optimized simultaneously, which allow a good fit-
ting even if the person did not strike the pose ade-
quately.

Figure 1: The grey contour in the left image is used
to fit the template (middle image). Fitted model on
the right.

The main advantage of our method is the simple
setup: Only a single calibrated low-cost camera is
needed and standard room lighting is sufficient, be-
cause the segmentation is invariant to casted shad-
ows and the fitting algorithm is very robust to small
errors in the segmented contours.

2. Related Work
There are two main approaches to model fitting
of human bodies. The first are shape-constructing
methods like 3D-shape-by-silhouette, laser range
scanning (as used for obtaining the digital 3D hull
of handmade models) or shape from dense dispar-
ity maps etc. These methods obtain first a surface
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skin model of the person and estimate or fit the un-
derlying movement capabilities (the skeleton) in a
second step to the estimated skin model. These ap-
proaches rely on perfect segmentation of the person
and background and are sensitive to noisy measure-
ments, but do not need a template model and are
therefore well suited to fit anomalies like unusual
clothes etc. An example for a shape-by-silhouette
approach is [13], where an individual is captured by
16 calibrated cameras in a box with homogenous
background. In [8] a real-time silhouette approach
using 4 cameras is able to track roughly the motion
of a person and recognizes different postures.

The second approach is to start from a template
model, usually a combination of skin and skeleton,
and to adapt the template to the currently observed
person by minimizing the difference of some calcu-
lated features between model and images. Contour
or silhouette information is usually among them.
A good example is the work of Pascal Fua, e.g.
[10], where a body model consisting of scalable
spheres is fitted to silhouette and depth informa-
tion. Another recent approach, which gives very
good fitting results, but relies on manual interaction
is given in [11]. In that work a template skin and
skeleton model is fitted to 6 synchronized camera
views, where only the internal camera parameters
are known.

Our method only needs a single camera and
doesn’t need a homogenous background, because
the method is robust against small errors in the seg-
mented contour. We achieve this by our global op-
timization approach, that simultaneously optimizes
the pose and the scale values in all images.

The paper is organized as follows. We begin with
a description of the template model. The next sec-
tion describes our segmentation approach, which
leads to contour information. The segmented con-
tour is then used to minimize the distance between
model and person contour by a global optimiza-
tion method. The estimated parameters and the er-
ror function are explained in the following sections.
Qualitative and quantitative fitting results are given
in the results section. At last the fitted body model
is used to capture the motion of a person and results
are given.

3. Body Model
Depending on the kind of work different body mod-
els are used for the estimation process. The mod-
els range from simple stick figures [2] over models

Figure 2: The body model (left) and the joints of the
arm (right)

consisting of scalable spheres (meta-balls) [10] to
linear blend skinned models [1]. We use models
consisting of rigid, scalable meshes for each body
segment, that try to make a balance between fast
computation, which requires low resolution models
with few points and accurate modeling of the per-
son. The movement capabilities are the same as de-
fined in the MPEG4 standard. An example for the
movement capabilities of the arm are shown in fig-
ure (2). Depending on the complexity of the model
some degrees of freedom are missing. One of the
models used in the experiments of this work has
for example a rigid upper body, as visible in figure
(2). Another model fitted here, which has the full
movement capabilities of the MPEG4-body (figure
4), has in contrast at each vertebra of the spine up
to 3 degrees of freedom, with limited or unlimited
rotation around each axis. The use of the MPEG4
definition of movement gives the opportunity to ex-
change the body model easily and to have the fitted
model in a common format.

4. Segmentation
The fitting process relies on the contour difference
between observed person and projected model. To
obtain the contour of the observed person a segmen-
tation of the image fore- and background is neces-
sary. We assume here that the background is static
and known, which is achieved by taking images
from the background without the person.

The segmentation should have the following
properties:

• The image noise should be taken into account
• Casted shadows of the person should be seg-

mented as background
• The background may be any static scene
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Figure 3: Segmentation result

The segmentation itself is basically done by
thresholding a difference image. For each pixel the
variance and mean is calculated on a sequence of
the static scene without the person to reflect the im-
age noise. This modeling of person and background
regions is very similar to that of [7].

To treat shadows, the original image RGB values
are converted into the HSL (hue, saturation, light-
ness) space, which de-couples color and brightness
and represents the color as hue and saturation. Ide-
ally shadows don’t change the color of the covered
scene part, but only their brightness, therefore a rep-
resentation in the HSL space is well suited to make
the segmentation invariant to shadows. It was seen
from experiments that these invariance is at least
achieved to some degree. Problematic image re-
gions are pixels of the person, that have similar
color with the background pixels at the same image
position, because segmentation of those pixels has
to be done by their brightness difference. In case
that the person can be well distinguished from the
background by color, because there are only highly
saturated colors present, the segmentation is indeed
invariant to shadows. Correct segmentation of shad-
ows could be improved by a similarity measure like
in [4], but was not necessary in the setup used here.

Features like color and brightness aren’t suf-
ficient for a background of arbitrary appearance.
However the use of color and brightness allows for
more varying backgrounds than a simple grey value
thresholding as visible in figure (6).

To decide whether a pixel belongs to the back-
ground or to the person, the Mahalanobis distance
between HSL-pixel value and HSL-mean is thresh-
olded. Therefore it is necessary to convert the polar
coordinates of the HS channels into Cartesian coor-
dinates (written here as hsL).

Let Σ be the covariance matrix at an image po-
sition and µ = (h̄, s̄, L̄) the corresponding mean
value. Then a pixel with values (h, s, L) belongs to
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The manually given threshold t and the parameter
γ are the same for all pixels. The scale value γ

gives the possibility to vary the importance of the
brightness difference. In case of fully saturated col-
ors present in the background, this value may be set
to zero, and is usually in [0, 1]. To handle cases,
where no variance in color is present at a certain
pixel position over the image sequence of the back-
ground, e.g. if a pixel value is dense or zero in all
images, we add the identity to the covariance ma-
trix.

A typically segmentation result is visible in fig-
ure (3) left. To eliminate noise we apply an opening
operator and take the largest connected region af-
terwards. Small holes are filled by a closening op-
erator, which results in the final segmentation as in
figure (3) right.

5. Distance Transform
The contour of the segmented person is found by a
contour following algorithm. The extracted image
contour is then distance transformed.
The distance transform is an operator usually ap-
plied to binary images. The result of the trans-
form is an image that has at each image position
the distance to the contour as the pixel value. There

Figure 5: Distance transformed image of the person
contour.

are several different sorts of distance transforms de-
pending upon which distance metric is being used
to determine the distance between pixels. We use
here the Borgefors metric, which assigns a horizon-
tal displacement of 1 pixel the value 3 and a diag-
onal the value 4. This way integer operations can
be performed. We implemented the two-pass algo-
rithm as described in [12], which is faster than a
convolution approach.
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Figure 4: The 6 poses used for optimization

An example of a distance transformed image of
the segmented person contour is shown in figure (5).
The contour of the segmented person is shown in
white in the left image.

6. Optimization Function
The resulting model parameters after the fitting are
the scale values of each body segment, one for
each direction of the local coordinate system. Let
σi = (σx

i , σ
y
i , σz

i ) be the scale values for the i-
th body segment. The optimization problem can
then be defined as follows: Find the scale values
σ1, .., σN of the N body segments, such that the
model contour looks most similar to the segmented
contour of the person.

6.1. Error Function
The error function, which models these similarity,
consists of three different parts:

f(p) = e = (eP
, e

M
, e

B)

The three error vectors are now described in more
detail.

6.1.1. Person to Model Distance
The contour CM of the model is calculated with re-
spect to the current scale parameters σ1, .., σN . Af-
terwards for each pixel on the person’s contour CP ,
which does not change during the optimization, the
corresponding value in the distance transformed im-
age DM of the model contour is taken as the error
for that pixel. Afterwards each error value is nor-
malized by the length of the person’s contour. This
error e

P ∈ R
|CP | has for each pixel on the person’s

segmented contour a value, which is the distance to
the nearest pixel on the model’s contour. Each entry
of e

P is defined as

e
P
i =

1
p

|CP |
D

M (xi),

where xi, i = 1..|CP | is the i-th contour point.

6.1.2. Model to Person Distance

Ideally the opposite distances should be also taken
into account, which is the distance from each pixel
on the model contour to the nearest one on the per-
son’s contour. Because the model contour changes
during the optimization, only the average error of
all contour pixels is taken, such that

e
M ∈ R =

1
p

|CM |

s

X

x∈CM

(DP (x))2.

6.1.3. Constraints

To ensure that the estimated parameters are in a
valid range, barrier functions are used. For each pa-
rameter an additional error is calculated that repre-
sents the distance to the desired interval. E.g. each
scale value has to be in [smin, smax]. In the exper-
iments we set smin = 0.4 and smax = 1.9. The
actual choice of the barrier function is not impor-
tant, but is usually like that in figure (7). This part
of the error vector is e

B ∈ R
3N .

Figure 7: The barrier function

6.2. Justification
We now justify briefly, why the above composition
of e is appropriate for our minimization problem.
In the optimization process |e| gets minimized or
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Figure 6: Optimization starting configuration. Initial model contour in white.

rather

|e|2 = |eP |2 + |eM |2 + |eB|2 (1)

=

P

x∈CP

DM (x)
2

|CP |
+

P

x∈CM

DP (x)
2

|CM |
+ |eB |2

(2)

Equation (2) shows that in |e|2 the person to model
contour distance and the model to person contour
distance have the same influence on the optimiza-
tion in spite of the higher dimensionality of e

P .
The LM method is only appropriate for overde-

termined problems. A good description of the LM
method is given in the Appendix of [6]. The er-
ror function e = F (p) is of much higher dimen-
sionality than the parameter vector p. However this
does not guarantee an overdetermination. Only if
the change of each parameter does at least change
one error value it is possible to reach the desired so-
lution. Or to be more exact, only if the Jacobian of
F has full rank. If only a single view is taken to es-
timate all scale values, there are some scale values
that have no effect on the value of the error function.

7. Multiple Views
So far we explained how the optimization can take
place for a single image of the person using the per-
son’s segmented contour and the rendered model
with its contour. The optimization minimizes the
differences of appearance for both contours. How-
ever it is not possible to estimate all scale values for

each body segment from a single view. Therefore
we extend the optimization to multiple views.

For each view the person has to position itself
in a special configuration, called a pose in the latter.
We use 6 different poses as shown in figure (4). The
different poses allow estimation of specific scale pa-
rameters. For example the overall height is covered
in the first pose. The length of the legs is specified
in the second pose and the third pose gives the re-
lation between lower and upper leg etc. Important
is, that the optimization is not done for single views
separately, but all parameters are estimated for all
poses simultaneously.

Multiple views increase the number of error val-
ues by e

P for each view. Additionally there is one
error value eM calculated on the model’s contour.

Someone can imagine that it is rather difficult for
a person to perfectly strike all the poses. For exam-
ple it was seen to be very difficult to stand on one
foot and bend the knee in exactly 90 degrees.

If the captured pose of the person is not exactly as
desired a simple scaling of all body segments, can
never match the contour perfectly, like the bended
knee in image 3 (upper right) of figure (6). There-
fore we estimate for each pose additional parame-
ters, namely the joint values, which were seen to
vary significantly. These were for example the an-
gle of the knee in image 3, or the angle of the el-
bow flexion and the shoulder abduct as visible in
the middle image of the lower row of figure (6).

In each pose the person has to stand at the same
marked position on the floor. Usually people tend to
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Figure 8: Fitting result. Model contour in white. Color version in the Appendix.

move a little aside from that position, therefore the
translation on the ground is also optimized within
a constrained interval. Because it is not possible to
stand quite straight without moving for a untrained
person, the global rotation is also estimated for each
pose separately. The overall optimization parame-
ters are

p = (σ1, .., σN , v1, ..vL)

where vj is the vector with parameters for the j-
th pose and σi are the desired scaling parameters.
For each pose vj consists of parameters for some
important joints and values for the global translation
and rotation.

8. Fitting Algorithm
The captured images of the person striking the
6 poses are used offline to fit the template body
model. The difference between model and person
contour is minimized. As the correspondences be-
tween both are given only implicitly due to the near-
est neighbor approach, the fitting does only reach
the global optimum, if the starting point is near
enough to it. Problematic are especially the out-
stretched arms of the 4th pose, see lower left of
figure (6). If the person is significantly smaller or
larger than the template model, the nearest neigh-
bor approach will fit both the upper and lower con-
tour part of the person’s arm to only one contour
part of the model. Therefore it is necessary to do
the optimization in two steps. In the first step only
the length of the legs, and the upper body are es-
timated. In the second step all parameters for all

poses are estimated simultaneously. In both steps
we use the LM algorithm from the MINPACK pack-
age [3], which calculates the Jacobian numerically.

Additional symmetry constraints guarantee that
the left and right arms and legs are of the same size.
We will not give here the exact set of estimated pa-
rameters, because these are up to 100 depending on
the used model. For high complex models, which
have the full MPEG4-movement capability, some
body segments are coupled, e.g. for the spine seg-
ments of the upper body only three scale values are
estimated.

9. Fitting Results
The fitting was tested for 7 persons, which had to
strike all the 6 poses. To make the task easier for
the people, the current camera image augmented
with the desired model pose was displayed in front
of them, such that they could directly see how good
they strike the pose. The model had the full MPEG4
movement capabilities as shown in figure (4). A
qualitative result for the fitting is visible in figure
(8), where the template was fitted to a person, which
was rather different to the template model. The
overall fitting process takes about 5 min for acquir-
ing the images as the person has to strike 6 different
poses and about 10 minutes for the optimization de-
pending on the hardware.

To measure the accuracy of the model, the overall
height, the arm length and the length of the lower
leg of the models were compared to manual mea-
surements of the real persons. The results are shown
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Height Arm length Length lower leg mean
Pers. Pers. Mod. Err. Pers. Mod. Err. Pers. Mod. Err. Err.

0 1.95 1.98 1.5% 1.90 1.86 2.1% 0.62 0.66 5.7% 3.1%
1 1.78 1.84 3.4% 1.75 1.68 3.7% 0.58 0.62 7.3% 4.8%
2 1.68 1.69 0.8% 1.64 1.63 0.9% 0.51 0.54 7.7% 3.1%
3 1.81 1.86 2.8% 1.83 1.84 0.6% 0.59 0.65 9.5% 4.3%
4 1.92 1.97 2.7% 1.96 1.95 0.6% 0.62 0.69 11.3% 4.8%
5 1.88 1.92 1.9% 1.81 1.83 0.9% 0.61 0.66 8.5% 3.8%
6 1.89 1.86 1.6% 1.95 1.91 2.2% 0.63 0.65 3.6% 2.5%

mean. 2.1% 1.6% 7.6% 3.8%

Table 1: Quantitative fitting results for the 7 persons

in table (1).
The achieved average error of 2.1% for the height

and 1.6% for the arm length is within the expected
range and accurate enough for further use of the
model. The error of 7.6% for the lower leg is higher,
because on the one hand measuring the ground truth
was more difficult and inaccurate. On the other
hand the image information for the estimation of
the lower leg scale values is much less than for the
height and arm length. Therefore small segmenta-
tion errors have a larger effect on the estimation.
To decrease the error further the camera calibration
could be more accurate and higher resolution im-
ages could be taken. The image used here for the
experiments were PAL resolution.

10. Motion Capture Results
The same images of the person in the 6 poses can
be applied to different body models. To capture the
motion of a person we took a simpler model as vis-
ible in figure (2) and (9), which consists of 18 rigid
body parts and up to 40 degrees of freedom (DOF).
We present here results as calculated by the method
described in [5], where depth images from a moving
person are used to estimate joint angles. The person
moved its arms at first in a waving manner and later
crossing the arms in front of the chest. In figure (9)
three images from the sequence are shown. The top
row shows the depth images with lighter values in-
dicating closer points. The middle row shows the
original images overlayed with the estimated model
pose in grey. The bottom row shows the same model
pose as seen from another position. The model’s
position is estimated below the real person through-
out the sequence, because the model was fitted of-
fline beforehand to the person showing a bare upper
body. For this sequence 14 DOF were estimated:
The global transform, the three shoulder angles and

the elbow flexion. The processing of one frame took
on the average 200ms on a 3GHz Pentium 4.

11. Conclusions
We presented a system that is able to fit MPEG4
body models to images from 6 different poses of a
person. In spite of the simple setup with a single
camera and standard room lighting, the fitted mod-
els are accurate enough to use them for capturing
human motion as presented in the results. The accu-
racy of the models may be increased by using higher
resolution cameras with better calibration and addi-
tional images of each pose or additional poses.
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