
A Comparison of Iterative 2D-3D Pose
Estimation Methods

for Real-Time Applications

Daniel Grest, Thomas Petersen and Volker Krüger

Aalborg University Copenhagen, Denmark
Computer Vision Intelligence Lab

{dag,vok}@cvmi.aau.dk

Abstract. This work compares iterative 2D-3D Pose Estimation meth-
ods for use in real-time applications. The compared methods are avail-
able for public as C++ code. One method is part of the openCV li-
brary, namely POSIT. Because POSIT is not applicable for planar 3D-
point configurations, we include the planar POSIT version. The second
method optimizes the pose parameters directly by solving a Non-linear
Least Squares problem which minimizes the reprojection error. For refer-
ence the Direct Linear Transform (DLT) for estimation of the projection
matrix is inlcuded as well .

1 Introduction

This work deals with the 2D-3D pose estimation problem. Pose Estimation has
the aim to find the rotation and translation between an object coordinate system
and a camera coordinate system. Given are correspondences between 3D points
of the object and their corresponding 2D projections in the image. Additionally
the internal parameters focal length and principal point have to be known.

Pose Estimation is an important part of many applications as for example
structure-from-motion [11], marker-based Augmented Reality and other appli-
cations that involve 3D object or camera tracking [7]. Often these applications
require short processing time per image frame or even real-time constraints[11].
In that case pose estimation algorithms are of interest, which are accurate and
fast. Often, lower accuracy is acceptable, if less processing time is used by the
algorithm. Iterative methods provide this feature.

Therefore we compare three popular methods with respect to their accuracy
under strict time constraints. The first is POSIT, which is part of openCV [6].
Because POSIT is not suited for planar point configurations, we take the planar
version of POSIT also into the comparison (taken from [2]. The second method
we call CamPoseCalib (CPC) from the class name of the BIAS library [8]. The
third method is the Direct Linear Transform for estimation of the projection
matrix (see section 2.3.2 of [7]), because it is well known, used often as a reference
[9] and easy to implement.

Even though pose estimation is studied long since, new methods have been
developed recently. In [9] a new linear method is developed and a comparison is



given, which focuses on linear methods. We compare here iterative algorithms,
which are available in C++, under the constraint of fixed computation time as
required in real-time applications.

2 2D-3D Pose Estimation

Given are correspondences between 3D-points pi, which project into a camera
image at position p′

i (see Fig. 1). Pose estimation from these 2D-3D correspon-
dences is about finding the rotation and translation between camera and object
coordinate systems.

2.1 CamPoseCalib (CPC)
The approach of CamPoseCalib is to estimate the relative rotation and

Fig. 1. CamPoseCalib estimates the
pose by minimizing the reprojec-
tion error d between initial pro-
jected points from given correspon-
dences (pi, p̃′

i)

translation of an object from an initial
position and orientation (pose) to a new
pose. The correspondences (pi, p̃′

i) are
given for the new pose. Figure 1 illustrates
this. The method was originally published
in [1]. Details about the implementation
used can be found in [5].

The algorithm can be formulated as
a non-linear least squares problem, which
minimizes the reprojection error d:

θ̂ = arg min
θ

m∑
i=1

(ri(θ))2 (1)

for m correspondences. The residui func-
tions ri(θ) represent the reprojection er-
ror d = ri(θ)2 = r2x + r2y and θ =
(θx, θy, θz, θα, θβ , θγ)T are the 6 pose pa-
rameters, three for translation and three
angles of rotation around the world axes.
More specifically, the residui functions
give the difference between moved, pro-
jected 3D point m′(pi,θ) and the target point:

ri(θ) = m′(pi,θ)− p̃′ (2)

The projection with pixel scales sx, sy and principal point (cx, cy)T is:

m′(p,θ) =

(
sx

mx(p,θ)
mz(p,θ) + cx

sy
my(p,θ)
mz(p,θ) + cy

)
(3)

where m(θ, p) = (mx,my,mz)T is the rigid motion in 3D:

m(θ, p) = (θx, θy, θz)T +Rx(θα)Ry(θβ)Rz(θγ)p (4)



In order to avoid Euler angle problems, a compositional approach is used, that
accumulates a rotation matrix during the overall optimization, rather than the
rotation angles around camera axes x, y, z, which are estimated each iteration.
More details in page 38-43 of [5].

The solution to the optimization problem is found by the Levenberg-Marquardt
(LM) algorithm, which estimates the change in parameters in each iteration by:

∆θ = −(JTJ + λI)−1JTr(θt) (5)

where I is the identity matrix and J is the Jacobian with the partial derivatives
of the residui functions (see page 21 of [5]).

The inversion of JTJ requires det(JTJ) > 0, which is achieved by 3 corre-
spondences, because each correspondence gives two rows in the Jacobian and
there are 6 parameters. The configuration requirement of 3D and 2D points is,
that neither of them are lying on a line. However, due to the LM extension a
solution that minimizes the reprojection error is always found, even for a single
correspondence. Of course it will not give the correct new pose, but it returns a
pose which is close to the initial pose.

The implementation in BIAS [8] also allows to optimize the internal camera
parameters and has the option to estimate an initial guess, both is not used
within this comparison.

2.2 POSIT

Fig. 2. POSIT estimates the pose
by using a scaled orthographic pro-
jection (SOP) from given correspon-
dences pi,p′

i. The SOP of pi is here
shown as p̂′

i with a scale value of
0.5.

The second pose estimation algorithm
uses a scaled orthographic projection
(SOP), which resembles the real perspec-
tive projection at convergence. The SOP
approximation leads to a linear equa-
tion system, which gives the rotation and
translation directly , without the need of a
starting pose. A scale value is introduced
for each correspondence, which is itera-
tively updated. We give a brief overview
of the method here. More details about
POSIT can be found in [4, 3].

Figure 2 illustrates this. The corre-
spondences are pi,p′

i. The SOP of pi is
here shown as p̂′

i with a scale value of
0.5. The POSIT algorithm estimates the
rotation by finding the values for i, j,k in
the object coordinate system, whose ori-
gin is p0. The translation between object
and camera system is Op0.

For each SOP 2D-point a scale value
can be found such that the SOP p̂′

i equals
the correct perspective projection p′

i. The



POSIT algorithm refines iteratively these scale values. Initially the scale value
(w in the following) is set to one.

The POSIT algorithm works as follows:

1. Initially set the unknown values wi = 1 for each correspondence.
2. Estimate pose parameters from the linear equation system
3. Estimate new values wi by wi = pT

i k
tz

+ 1
4. Repeat from step 2 until the change in wi is below a threshold or maximum

iterations are reached

The initially chosen wi = 1 approximates the real configuration of camera
position and scene points well, if the fraction of object elongation to camera
distance is small.

If the 3D points lie in one plane the POSIT algorithm needs to be altered.
A description of the co-planar version of POSIT can be found in [10].

3 Experiments

There are several experiments on synthetic data conducted, whose purpose is to
reveal the advantages and disadvantages of the different methods. We use imple-
mentations as available for the public for download of CamPoseCalib [8] and the
two POSIT methods from Daniel DeMenthons homepage [2]. The C++ sources
are compiled with Microsoft’s Visual Studio 2005 C++ compiler in standard re-
lease mode settings. The POSIT method is also part of openCV [6]. Experiments
showed, that the openCV version is about two times faster than our compilation.
However we chose to use our self compiled version, because we want to compare
the algorithms rather than binary realeases or compilers.

In order to resemble a realistic setup, we chose the following values for all
experiments. Some values are changed as stated in the specific tests.

– 3D points are randomly distributed in a 10x10x10 box
– camera is positioned 25 units away, facing the box
– internal camera parameters are sx = sy = 882, cx = 600 and cy = 400, which

corresponds to a real camera with 49 degree opening angle in y-direction and
an image resolution of 1200x800 pixels

– the number of correspondences is 10.
– Gaussian noise is added to the 2D positions with a variance of 0.2 pixels
– each test is run 100 times with varying 3D points

The accuracy is measured in the following tests by comparing the estimated
translation and rotation of the camera to the known groundtruth.

The translation error is measured as the Euclidean distance between esti-
mated camera position and real camera position divided by the distance of the
camera to the center of the 3D points. For example in the first test, an translation
error of 100% means 25 units difference.

The rotational error is measured as the Euclidean distance between the ro-
tation quaternions representing the real and the estimated orientation.



3.1 Test 1: Increasing Noise

In many applications the time for pose estimation is bound by an upper limit.
Therefore, we compare here the accuracy of different methods, which are given
the same calculation time. The time chosen for each iterative algorithm is the
same time as for the non-iterative DLT.

Normal distributed noise is added to the 2D positions with changing variance.
The following settings are used:

– 2D-noise is increased from 0 to 3.3 pixels standard deviation (variance 10)
– The initial pose guess for CPC: rotation is two degrees off and position is

3.4% away from the real position
– Initial scale value of POSIT is 1 for all points
– Number of iterations for CPC is 9 and for POSIT 400

The initial guess for CPC is 2 degrees and 0.034 units off. This resembles a
tracking scenario as in augmented reality applications.

In Figure 10 the accuracy of all methods is shown with boxplots. A boxplot
shows the median (red horizontal line within boxes) instead of the mean, as well
as the outliers (red crosses). The blue boxes denote the first and third quartile
(the median is the second quartile).

The left column shows the difference in estimated camera position, the right
column the difference in orientation as the Euclidian length of the difference
rotation quaternion. The top row shows CPC, which accuracy is better than
POSIT (middle row) and DLT (bottom row).

3.2 Test 2: Point Cloud Morphed to Planarity
In many applications the spatial configuration of the 3D points is unknown as
in structure-from-motion. Especially interesting is the case, where the points
lie in a plane or are close to a plane. In order to test the performance of the

Fig. 3. Test 2: Initial box shaped point
cloud distribution is changed into pla-
narity.

different algorithms, the point cloud is
transformed into a plane by reducing
its thickness each time by 30%.

Figure 3 illustrates the test. The
plane is chosen not to face the cam-
era directly (the plane normal is not
aligned with the optical axis), because
a correct pose is in that case also
found, if the camera is on the op-
posite side of the plane. Because the
POSIT algorithm can’t handle copla-
nar points, the planar POSIT version
is tested in addition to CPC and DLT.

Figure 4 shows the translation er-
ror versus the thickness of the box (ro-
tational errors are similar). As visible, the DLT error increases greatly when the
box gets thinner than 0.2 and fails to give correct results for a thickness smaller



Fig. 4. Test 2: Point cloud is morphed into planarity. Shown is the mean of 100 runs.

than 1E-05 (the algorithm returns (0, 0, 0)T as position in that case). The nor-
mal POSIT algorithm performs similar to the DLT. Interesting to note is, that
the planar POSIT algorithm works only correctly, if the 3D points are very close
to coplanar (a thickness of 1E-20). Important is the observation, that there is a
thickness range, where non of the POSIT algorithms estimates a correct result.
The CPC algorithm is unaffected by a change in the thickness, while the accu-

Fig. 5. Test 2: Point cloud is morphed into planarity. Shown is a closeup of the same
values as in Fig. 4

racy of the planar POSIT is slightly better for nearly coplanar points as visible
on in Figure 5.



3.3 Test 3: Different Starting Pose for CPC

The iterative optimization of CPC requires an initial guess of the pose. The per-
formance of CPC depends on how close these initial

Fig. 6. Test 3 illustrated. The initial
camera pose for CPC is rotated on
a circle.

parameters are to the real ones. Further
there is the possibility, that CPC gets
stuck in a local minimum during optimiza-
tion. Often a local minimum is found, if
the camera is positioned exactly on the
opposite side of the 3D points.

In order to test this dependency, the
initial guess of CPC is changed, such that
the camera is at the same distance to the
point cloud circling around it. Figure 6
illustrates this, the orientation of the ini-
tial guess is changed such that the camera
faces the point cloud at all times.

Figure 7 shows the mean and standard
deviation of the rotational error (transla-
tion is similar) versus the rotation angle of the initial guess. Higher angles mean
a worse starting point. The initial pose is opposite to the real one for 180 degrees.
If the initial guess is worse than 90 degrees the accuracy decreases. For angles

Fig. 7. Mean and variance. The rotation accuracy of CPC decreases significantly, if
the starting position is on the opposite side of the point cloud.

around 180 degrees the deviation and error becomes very high, which is due to
the local minimum on the opposite side. Figure 8 shows a close-up of the mean of
Figure 7. Here it is visible, that the accuracy of CPC is slightly better than CPC
and significantly better than DLT for angles smaller 90 degrees. Figure 9 shows
the mean and standard deviation of the computation time for CPC, POSIT and



Fig. 8. A closeup of the values of figure 7. The accuracy of CPC is better than the
other methods for an initial angle that is within 90 degrees of the actual rotation.
DLT. If the initial guess is worse than 30 degrees, CPC uses more time because
of the LM iterations. However, even in worse cases it is only 2 times slower.

Fig. 9. Timings. Mean and variance.

From the accuracy and timing results for this test it can be concluded, that
CPC is the more accurate method compared to POSIT, if given the same time
and an initial guess which is within 30 degrees of the real one.

4 Conclusions

The first test showed, that CPC is more accurate than the other methods given
the same computation time and an initial pose which is only 2 degrees off the



real one, which is similar to the changes in real time tracking scenarios. CPC is
also more accurate if the starting angle is within 30 degrees as test 3 showed.
POSIT has the advantage, that it is not in the need of a starting pose and is
available as an highly optimized version in openCV.

In test 2 the point cloud was changed into a planar surface. Here the POSIT
algorithms gave inaccurate results for a box thickness from 0.2 to 1E-19 making
the POSIT methods not applicable for applications where the 3D configuration
of points is close to co-planar as in structure-from-motion applications.

The planar version of POSIT was most accurate, if the 3D points are arranged
exactly in a plane. Additionally it can return 2 solutions: camera positions on
both sides of the plane. This is advantageous because in applications where
a planar marker is observed, the pose with smaller reprojection error is not
necessarily the correct one, because of noisy measurements.

References

1. H. Araujo, R. Carceroni, and C. Brown. A Fully Projective Formulation to Improve
the Accuracy of Lowe’s Pose Estimation Algorithm. Journal of Computer Vision
and Image Understanding, 70(2), 1998.

2. Daniel DeMenthon. www.cfar.umd.edu/˜daniel, 2008.
3. P. David, D. Dementhon, R. Duraiswami, and H. Samet. SoftPOSIT: Simultaneous

Pose and Correspondence Determination. Int. J. Comput. Vision, 59(3):259–284,
2004.

4. D.F. DeMenthon and L.S. Davis. Model-Based Object Pose in 25 Lines of Code.
International Journal of Computer Vision, 15:335–343, 1995.

5. Daniel Grest. Marker-Free Human Motion Capture in Dynamic Cluttered Envi-
ronments from a Single View-Point. PhD thesis, MIP, Uni. Kiel, Kiel, Germany,
2007.

6. Intel. openCV: Open Source Computer Vision Library. opencvli-
brary.sourceforge.net, 2008.

7. Vincent Lepetit and Pascal Fua. Monocular Model-Based 3D Tracking of Rigid
Objects: A Survey. Foundations and Trends in Computer Graphics and Vision,
1(1):1–104, 2005.

8. MIP Group Kiel. Basic Image AlgorithmS (BIAS) open-source-library, C++.
www.mip.informatik.uni-kiel.de, 2008.

9. F. Moreno-Noguer, V. Lepitit, and P. Fua. Accurate Non-Iterative O(n) Solution
to the PnP Problem . In ICCV, Brazil, 2007.

10. D. Oberkampf, D. F. DeMenthon, and L.S. Davis. Iterative pose estimation using
coplanar feature points. CVIU, 63(3):495–511, 1996.

11. B. Williams, G. Klein, and I. Reid. Real-time SLAM Relocalisation. In Proc. of
Internatinal Conference on Computer Vision (ICCV), Brazil, 2007.



Fig. 10. Test 1: Increasing noise. Left: translation. Right: rotation. CPC (top) estimates
the translation and rotation with a higher accuracy than POSIT (middle) and DLT
(bottom). All algorithms used the same run-time.


