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Daniel Grest1, Volker Krüger1 and Reinhard Koch2

1 Aalborg University Copenhagen, Denmark
Aalborg Media Lab

2 Christian-Albrechts-University Kiel, Germany
Multimedia Information Processing

Abstract. In this work3a combination of depth and silhouette informa-
tion is presented to track the motion of a human from a single view.
Depth data is acquired from a Photonic Mixer Device (PMD), which
measures the time-of-flight of light. Correspondences between the sil-
houette of the projected model and the real image are established in
a novel way, that can handle cluttered non-static backgrounds. Pose is
estimated by Nonlinear Least Squares, which handles the underlying dy-
namics of the kinematic chain directly. Analytic Jacobians allow pose
estimation with 5 FPS.
Keywords: optical motion capture, articulated objects, pose estimation,
cue-integration

1 Introduction
Valid tracking of human motion from a single view is an important aspect in
robotics, where research aims at motion recognition from data, that is collected
from the robot’s measuring devices. Additionally, the processing time should
be at least near-to-real-time to make human-robot interaction possible. Both
aspects are addressed in this work.

Motion capture and body pose estimation are also applied in motion analysis
for sports and medical purposes. Motion capture products used in the film in-
dustry or for computer games are usually marker based to achieve high quality
and fast processing. While the accuracy of markerless approaches is comparable
to marker based systems [13, 4], the segmentation step makes strong restrictions
to the capture environment, because these systems rely on segmentation of the
person in the foreground, e.g. homogenous clothing and background, constant
lighting, camera setups that cover a complete circular view on the person etc.

Our approach doesn’t need explicit segmentation or homogenous clothing
and gives reliable results even with non-static cluttered background. Addition-
ally, motion can be accurately tracked even from a single view, because the un-
derlying motion and body model is directly incorporated in the image processing
step. We present here a combination of depth data and silhouette information,
which extends the motion estimation from stereo data [7] with additional infor-
mation from silhouette correspondences. Results are given for depth data from
a novel measuring technique, called Photonic Mixer Device (PMD), which gives
a 64×48 depth image in real-time with 25FPS. The results show, that the char-
acteristic of this depth data is not sufficient alone for valid tracking. However in
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combination with silhouette information, the accuracy is increased and motion
can be successfully tracked over longer sequences.

Capturing human motion by pose estimation of an articulated object is
done in many approaches and is motivated from inverse kinematic problems in
robotics. Solving the estimation problem by optimization of an objective func-
tion is also very common [13, 8, 11]. Silhouette information is usually part of this
function, that tries to minimize the difference between the model silhouette and
the silhouette of the real person either by background segmentation [13, 11] or
image gradient [12, 5]. In [2] a scaled orthographic projection approximates the
full perspective camera model and in [13] the minimization of 2D image point
distances is approximated by 3D-line-3D-point distances. A recent extensive sur-
vey on vision-based motion capture can be found in [9].

While some kind of template body model is common in most approaches,
adaption of body part sizes of the template during the motion estimation is also
possible [12], where depth and silhouette information were combined to estimate
the size and pose of the upper body. In contrast to their approach, we estimate
pose in near-to-real-time and minimize silhouette differences in the image plane
rather than in 3D, which makes the estimation more accurate. The image pro-
cessing with color histograms allows us to establish valid silhouette correspon-
dences even with moving background, which in turn allows moving cameras. By
combination with depth data from a PMD device motion can be tracked, which
is not trackable from a single view with only one of these data types. Our method
minimizes errors, where they are observed and makes no approximations to the
motion or projection model. Additionally, it allows analytical derivations of the
optimization function. This speeds up the calculation by more accuracy and less
function evaluations than numerical derivatives. Therefore the approach is fast
enough for real-time applications in the near future as we process images already
with 5 frames per second on a standard PC Pentium IV 3 GHz.

2 Body and Motion Model

Depending on the kind of work different body models are used for the estimation
process. The models range from simple stick figures over

Fig. 1. The body model with ro-
tation axes shown as arrows

models consisting of scalable spheres (meta-
balls) [12] to linear blend skinned models [1].
We use models with motion capabilities as
defined in the MPEG4 standard, with up to
180 DOF, an example model is shown in fig-
ure (1). The MPEG4 description allows to ex-
change body models easily and to reanimate
other models with the captured motion data.
The model for a specific person is obtained
by silhouette fitting of a template model as
described in [6].

The MPEG4 body model is a combination
of kinematic chains. The motion of a point,
e.g. on the hand, may therefore be expressed



as a concatenation of rotations [7]. As the ro-
tation axes are known, e.g. the flexion of the elbow, the rotation has only one
degree of freedom (DOF), i.e. the angle around that axis. In addition to the joint
angles there are 6 DOF for the position and orientation of the object within the
global world coordinate frame. For an articulated object with p joints the trans-
formation may be written according to [7] as:

f(θ,x) =(θx, θy, θz)T + (Rx(θα) ◦ Ry(θβ) ◦ Rz(θγ) ◦ Rω,q(θ1) ◦ · · ◦Rω,q(θp)) (x)

where (θx, θy, θz)T is the global translation, Rx, Ry, Rz are the rotations around
the global x, y, z-axes with Euler angles α, β, γ and Rω,q(θi), i ∈ {1..p} denotes
the rotation around the known axis with angle θi. The axis is described by the
normal vector ωi and the point qi on the axis with closest distance to the origin.

The equation above gives the position of a point x on a specific segment of
the body (e.g. the hand) with respect to joint angles θ and an initial body pose.

The first derivatives of f(θ,x) with respect to θ give the Jacobian matrix
Jki = ∂fk

∂θi
. The Jacobian for the motion of the point x on an articulated object

is

J =
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0 1 0 ∂f
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with the simplified derivative at zero:
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= ωi × (x − qi) = ωi × x − ωi × pi . (2)

Here pi is an arbitrary point on the rotation axis. The term ωi×pi is also called
the momentum. The simplified derivative at zero is valid, if relative transforms
in each iteration step of the Nonlinear Least Squares are calculated and if all
axes and corresponding point pairs are given in world coordinates.

2.1 Projection
If the point x = (xx, xy, xz)T is observed by a pin-hole camera and the camera
coordinate system is in alignment with the world coordinate system, the camera
projection may be written as:

p(x) =
(

sx
xx

xz
+ cx

sy
xy

xz
+ cy

)
(3)

where sx, sy are the pixel scale (focal length) of the camera in x- and y-direction,
and (cx, cy)T is the center of projection in camera coordinates.
We now combine f(θ,x) and p(x) by writing g(sx, sy, cx, cy,θ,x) = p(f(θ,x)).
The partial derivatives of g can now be easily computed using the chain rule.
The resulting Jacobian reads as follows:
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The partial derivatives ∂f
∂θi

, i ∈ {α, β, γ, 1, .., p} are given in equation (1) and
f(θ) = (fx, fy, fz)T is short for f(θ,x). Note that f(θ) simplifies to x, if θ is
zero.

These Jacobian allows full camera calibration from (at best) five 2D-3D cor-
respondences or pose from 3 correspondences. An implementation of it with
an extension to the Levenberg-Marquardt algorithm[3], which ensures an error
decrease with each iteration, is available for public in our open-source C++
library4.

3 Correspondences by Silhouette

Fig. 2. Correspondence
search along the normal.

To compensate the drift we add silhouette infor-
mation to our estimation. This is achieved by cal-
culating additional 2D-3D correspondences for the
model silhouette and the silhouette of the real per-
son. In contrast to [13] we don’t utilize explicit seg-
mentation of the images in fore- and background,
but use the predicted model silhouette to search
for corresponding points on the real silhouette.
Previous work like [8] already took this approach
by searching for a maximum grey value gradient in
the image in the vicinity of the model silhouette.
However we experienced that the gray value gradi-
ent alone gives often erroneous correspondences, especially if the background is
heavily cluttered and the person wears textured clothes.

Fig. 3. The gradient (G(x)) and his-
togram (H(x)) values along the nor-
mal. Correct correspondence at 0.

Therefore we also take color infor-
mation into account. As the initial pose
is known, it is possible to calculate a
color histogram for each body segment.
We use the HSL color space to get
more brightness invariance. This refer-
ence histogram is then compared with a
histogram calculated over a small win-
dow on the searched normal. In figure 2
the normal is shown and the rectangu-
lar window, that are used for histogram
and gradient calculation. The expecta-
tion is, that the histogram difference
changes most rapidly on the point on
4 www.mip.informatik.uni-kiel.de/Software/software.html



the normal of the correct correspondence, where the border between person and
background is. The type of combination function was chosen by analyzing the
developing of gradient and histogram values over 15 normals in different im-
ages. The actual values of the combination were then evaluated experimentally
by trying different values and counting the number of correct correspondences
manually for about 100 silhouette points in 4 different images.

A rather difficult case is shown in figure 3, which shows a plot of the maximum
search along the normal of figure 2. The grey value gradient G(x) is shown as
a solid line, the gradient of the histogram differences H(x) as points and the
combination with lines and points. As visible, the grey value gradient alone
would give a wrong correspondence, while the combination yields the correct
maximum at zero.

For parallel lines it isn’t possible to measure the displacement in the di-
rection of the lines (aperture problem). Therefore we use a formulation that
minimizes the distance between the tangent at the model silhouette and the
target silhouette point (normal displacement), resulting in a 3D-point-2D-line

Fig. 4. Silhouette corre-
spondences

correspondence as visible in figure 4. For a single
correspondence the minimization is

min
θ

[
(g(θ,x) − x′)T n − d

]2
(6)

where n is the normal vector on the tangent line
and d is the distance between both silhouettes.
We compute d as d = (x̂′ − x′)n. The point on
the image silhouette x̂′ is the closest point to x′

in direction of the normal. In this formulation a
motion of the point perpendicular to the normal
will not change the error. We calculate the normal
vector as the projected face normal of the triangle,
which belongs to the point x′.

For a set X with N points and projected image
points X′ the optimal solution is:

θ̂ = arg min
θ

N∑
i=1

[
(g(θ,xi) − x′

i)
T ni − di

]2
This problem is known as Nonlinear Least Squares and can be solved by Newton’s
Method [3]. We use the Gauss-Newton Method [3], which doesn’t require the
second derivatives of g(θ,xi). The necessary Jacobian is given as:

Jik = (
∂g(θ,xi)

∂θk
)T ni (7)

Note that each of these correspondences gives one row in the Jacobian.
The solution is found by iteratively solving the following equation:

θt+1 = θt − (JT J)−1JT
(
G(θt,X) − X̂′

)
(8)

Here the Jacobian matrix J consists of all partial derivatives for all N points.
The Jacobian for a single point is given in equation (4). In case of convergence
the final solution θ̂ is found.



4 Combining Multiple Cues

Integration of different vision cues into our parameter estimation problem is
non trivial. Different cues like tracked edges or points give different information
about the model parameters. Additionally, the measurement noise of different
cues can vary dramatically.

In [5] both aspects are addressed by modeling different image cues, which are
defined by regions. These regions are then propagated through the estimation
by affine arithmetic. For example, tracked edges have a region that is elongated
along the edge and less elongated perpendicular to it. These regions are combined
into a generalized image force for each cue. The resulting region in parameter
space is approximated by a Gaussian distribution. The Gaussians from each
cue are then combined by a Maximum Likelihood Estimator and the result is
integrated in a classical Euler integration procedure. The defined image regions
are supposed to set hard limits on the possible displacements, however due to
Gaussian approximation of the resulting parameter region the limits are softened.
Therefore the approach becomes similar to a covariance based approach, where
each image cue has an associated covariance matrix.

The approach taken in this work is different. The silhouette information is
integrated by changing the objective function, such that the distance of the
projected 3D-point to the 2D line is minimized. This is equivalent to a point-
point distance with a covariance infinitely extended in direction along the edge.
The different measurement noise of different cues is integrated in the estimation
here by weighting each correspondence with a scalar. Weighting with a covariance
matrix would be possible as well. However, for the different cues in this work the
measurement noise is not exactly known and therefore covariance matrices are
assumed to be diagonal and extended the same in all directions. Additionally
it is assumed, that the measurement noise is the same for all measurements of
one cue, resulting in one single scalar weight for each cue. In addition to the
measurement noise, the weights reflect the different units of measurements, e.g.
the measurement unit of 3D point positions from stereo images is meter, while
the 2D measurement unit is pixels.

Let X = {x0,x1, ..,xk} be the set of model points and Y = {y1, ..,yk} be
their corresponding 3D-points from the PMD camera found by nearest neighbor
[7]. The correspondences for the silhouette information are built by the 3D-
points X = {xk+1, ..,xk+l} and corresponding points on the image silhouette
X ′ = {x′

0,x′
1, ..,x′

l}. Additionally assume that the pose of the person is known
at that time, such that the projected body model aligns with the observed image
as in the first image of figure 8. If the person now moves a little and an image
It+1 is taken, it is possible to capture the motion by estimating the relative joint
angles of the body between the frames It and It+1. The pose estimation problem
is to find the parameters θ̂ that best fit the transformed and projected model
points to the k + l correspondences. This can be formulated as follows:

θ̂ = arg min
θ

k∑
i=1

wi |f(θ,xi) − yi|2 +
l∑

j=1

wj

[
(g(θ,xk+j) − x′

i)
T nj − di

]2
(9)



This problem is again a Nonlinear Least Squares and is solved with the Gauss-
Newton method [3]. The necessary Jacobian is a row-wise combination of the
Jacobians from equation (1) and (7).

To get the initial pose, the user has to position the model manually in a
near vicinity to the correct image position. After a few ICP iterations, the initial
correct pose is found.

4.1 Arm Tracking from Silhouette and PMD-Data

Fig. 5. Setup used for the arm tracking.
PMD camera on the top with IR-LEDs
next to it.

A Photonic Mixer Device (PMD) is
able to measure the distance to scene
objects in its field of view. Similar to
laser range scanners it is based on the
time-of-flight of light. In contrast to
the rather expensive laser range scan-
ners, which usually give only one line
of distances at a time. A PMD de-
vice gives distance values for a com-
plete volume at a time. The construc-
tion and working principle is similar
to conventional cameras. The time of
flight is measured by phase differences
between modulated emitted light and received light. To become more invariant
to scene illumination and less disturbing, infrared light is used. More details can
be found in [10].

In figure 5 the setup used in the experiments is shown. On the top one sees
the PMD camera with Infrared-LEDs next to it. On the bottom is a conventional
cameras installed. The PMD-depth image is best visualized with a view on the

Fig. 6. Two views on the depth points, variance filtered

resulting 3D-scene points as shown in figure 6. Where one sees two views on
the same point cloud from different angles. The depth image has been altered
to eliminate erroneous depth values between fore- and background. To reduce



the influence of in-between-points and that of outliers, a variance filter is run on
the depth image, that calculates the variance within a 3 × 3 window and sets
all pixels with a deviation larger than a threshold to zero. Typical values are in
between 0.1m and 0.25m.

5 Results

The field of view of the PMD with 20 degrees is rather small and could not be
exchanged with other lenses, because the lens has a special daylight filter. There-
fore the compromise between a large visible scene volume and low outlier rate is
taken, which is at approx. 3m distance to the camera. In this distance the motion
of one arm is completely visible. The motion in the following sequence is esti-
mated from 3D-point-3D-point correspondences and 3D-2D-line correspondences
established from silhouette information. The motion of shoulder and elbow as
well as global translation and rotation were estimated, all together 10 DOF.

The motion of the right arm could be successfully tracked over the whole
length of different sequences. Even though the background is non-static and
cluttered (a person is walking around in the background) silhouette correspon-
dences are accurate as visible in figure 7. This is achieved by the combination
of grey value gradient and color histograms. An example sequence of 670 frames
which was recorded with 7 FPS is shown in figure 8. Depicted is the image of
the conventional camera superimposed with the estimated model pose. When
the arms are moving in front of the body, there is not enough silhouette visi-
ble for a valid single view tracking from silhouette data alone. In that case the
tracking relies on the depth data and becomes less accurate. The accuracy of the
estimation is limited by the accuracy of the fitted model, which does not reveal
the exact person’s shape in the shoulder region.

Experiments with depth data alone showed, that the estimation is less ac-
curate and during the 670 frame sequence tracking was lost for 50 frames. The

Fig. 7. Silhouette correspondences are accurate though the background is very dy-
namic.

depicted body model has 90000 points and 86000 triangles and processing time
was about 1.5 seconds per frame. For this type of motion however a less detailed
model is sufficient. In our experiments with a model consisting of a 10000 points
and approx. 3500 triangles the processing time was about 5FPS on a standard
PC Pentium IV 3GHz.



Fig. 8. Result sequence with dynamic background. The estimated model pose is over-
layed on the original camera image. Ten DOF were estimated.



6 Conclusions
We showed how estimation of human motion can be derived from point trans-
formations of an articulated object. Our approach uses a full perspective camera
model and minimizes errors where they are observed, i.e. in the image plane. The
combination of depth and silhouette information by color histograms and gradi-
ents allows to establish correct correspondences in spite of non-static background
and people wearing normal clothing. Therefore the approach allows moving cam-
eras as well. Ongoing research analyzes the quality of depth information of the
PMD and stereo algorithms. We expect the depth data from stereo to be less
accurate, but also exhibit less outliers than the PMD. Open problems are the
necessary known initial pose and the need of a fitted body model, because the
accuracy of the fitted model is a lower bound on the accuracy of the estimation.
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10. T. Möller, H. Kraft, J. Frey, M. Albrecht, and R. Lange. Robust 3D Measurement

with PMD Sensors. In IEEE PacRim, 2005.

11. M. Niskanen, E. Boyer, and R. Horaud. Articulated motion capture from 3-D

points and normals. In CVMP, London, 2005.

12. Ralf Plaenkers and Pascal Fua. Model-Based Silhouette Extraction for Accurate

People Tracking. In Proc. of ECCV, pages 325–339. Springer-Verlag, 2002.

13. B. Rosenhahn, U. Kersting, D. Smith, J. Gurney, T. Brox, and R. Klette. A

System for Marker-Less Human Motion Estimation . In W. Kropatsch, editor,

DAGM, Wien, Austria, Sept. 2005.


