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Abstract— We present a system for robust realtime person
tracking that integrates face detection, face color tracking and
foot tracking in a uniform way by using a particle filter. The
system is embedded in a complete immersive environment (3-
sided CAVE with 1-sided stereo back projection). The person
controls the visual environment by walking around inside.

I. INTRODUCTION

INTERACTING with virtual environments becomes in-
creasingly important. Spatially immersive displays offer

a comprehensive way to visualize and surround a person
with a virtual environment, e.g. the popular CAV ETM [1].
Interacting with such an environment can be done with tools
like space-mouses etc. Additionally the user’s head position
must be known at all times, to adapt the viewing perspective,
which becomes necessary if looking at more than one display.
The goal in our environment is to give the user the possibility
to interact with the virtual environment in an intuitive way
without the need to wear special hardware, but simply by hand
gestures or by walking around. The first step towards this goal
is the tracking of the user’s position.

We present a system which enables the user to navigate
in a scene simply by walking around. In addition we rely
on standard hardware, e.g. low cost pan-tilt-zoom cameras
and standard lighting. As our system consists of only three
displays, it is possible to light the interaction area via the
front, as visible in figure (1). In a six sided cave, the lighting
becomes much more difficult and may be solved for example
with transparent displays and triggered lighting/displaying like
in the blue-c system [2].

However the problem remains, that the interaction area
should be well lighted for better camera images with less
noise, while the display screens should not get any additional
light. The compromise between both is usually a rather dim
lighted environment, as shown in figure (1), where the displays
are clearly visible in spite of the light from the ceiling.

Alternatively infrared cameras and lighting can be used,
which results in loss of color information and usually restricts
the image processing to contour data. Another problem to deal
with is, that the lighting varies rapidly in our environment as
a certain amount of light is reflected from the displays and
changes when the displayed scene changes. We handle these
dark and changing lighting conditions robustly by the use of
color face tracking, face detection and foot tracking combined
within a particle system.

Fig. 1. A view of the interaction area with three cameras

We will begin with a short overview of our system. A de-
tailed introduction to CONDENSATION and particle systems
can not be given here, due to the limited length of the article.
We refer for more details to [3]. The description of the face and
foot tracking is followed by some results and the conclusions.

II. SYSTEM OVERVIEW

The interaction environment consists of a twelve square
meters area, which is surrounded by 3 displays, as shown in
figure 1. The central display is used for stereo visualization
with polarized filters.

The area is observed by three cameras, one static camera at
the ceiling and two cameras able to pan, tilt and zoom, which
are mounted at the left and right side of the center display.

Each camera is connected to a linux PC with two 1.4Ghz
Athlon CPUs for image processing. Each projector is con-
nected to a linux PC with a single CPU, but with a high end
consumer graphics card for visualization purposes. A dolby
surround audio system makes up the acustic environment.
The audio-PC is also used for controlling the rendering part.
Finally a ninth PC does the sensor fusion and coordinates the
movement of the pan-tilt-zoom cameras.

The data flow and the connections of all parts of the system
are shown in figure 2. On the right side are the face and foot
tracking modules for the image processing. The results are
fused by the sensor fusion module. On the left and bottom
side are the rendering and audio modules. The interaction
server receives the head position and adapts the scene and
perspective accordingly. The scene data is sent to the display
servers, which are connected to one projector each. The scene
graph and the correct perspective visualization for a cave like
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Fig. 2. Data transmissin between parts of the system

environment is part of the OpenSG library [4], that we use for
rendering.

III. FOOT TRACKING

The user’s foot positions are estimated based on a difference
image algorithm with an adaptive threshold. This approach
was already used in [5] and [6].

The camera mounted at the ceiling is equipped with a
wide-angular lens. It is tilted to view the whole floor of
the interaction area in front of the display. Furthermore the
radial distortion is compensated during computation. Since the
camera views the planar floor we can use four known points on
the floor to compute a homography Hfloor that relates ground
floor scene coordinates and image coordinates.

A segmented image with the user as foreground is computed
by thresholding a difference image. We identify the user
position with the bottom most position in the segmented
camera image. The foot position in the image is found by
scanning the segmented image from the bottom right to the
top left and searching for the first occurrence of a block of
the size u(x, y), where u(x, y) models the expected foot size
depending on the position (x, y) of the foot in the interaction
area.

It can be assumed that the feet move on a plane, namely
the floor, so the above mentioned homographyHfloor from the
camera coordinates to the floor coordinates is applied to get the
position of the user’s feet on the floor. These 2D coordinates
are submitted to the data fusion server for further processing
as a 3D point with height zero.

IV. FACE TRACKING

Face tracking in our system utilizes two seperate methods,
namely face detection [7] and a color histogramm tracking
algorithm [8]. The detection part is robust against lighting
changes and finds faces in the image regardless of their image
position in the previous frame. However it is computationally
expensive compared with the histogram method and only

recognizes faces if the person looks directly into the camera.
Therefore the recognition part is enhanced by a color his-
togramm tracker based on the CONDENSATION algorithm.

A. Face Detection

To detect faces a cascade classifier is run multiple times on
the input images. The classsifier is an object detector initially
proposed by Viola & Jones [7]. The classifier (namely a
cascade of boosted classifiers working with haar-like features)
is trained with a few hundreds of sample views of a particular
object (i.e., a face or a car), called positive examples, that are
scaled to the same size (say, 20x20), and negative examples -
arbitrary images of the same size.

We use an implementation from the OpenCV library [9],
which comes with a trained classifier for faces and worked
well within our environment, even with users wearing the
oversized glasses for stereo viewing.

Fig. 3. The top and bottom histogram regions

B. Color Histogram Tracking

The face detection part is enhanced with a color histogram
based tracking method. This is necessary for real-time require-
ments and to detect the user if he is not directly looking into
the camera. The color histogram tracking is very similar to
that of [8] with small differences. We use a special particle
system namely CONDENSATION and varied the similarity
for color multi-histograms. Also the HSL color space is used
instead of the HSV.

The state space for CONDENSATION is the position and
size of the face in the image. We will denote a particle’s
position in the state space as ~x = (x, y, s)T with x and y
being the image position and s the relative size to the reference
histogram.

Two color histograms are computed for each particle and are
compared with reference color histograms. The top histogram
ht reflects the real face position, while the bottom histogram
hb is computed on the upper body part of the observed person,
which is positioned two times the size of the histogram below
the top histogram. On the right side of figure 3 both histogram
regions are shown.

The histograms are computed with 100 color bins for the
(H,S) values and 10 bins for L values. A pixel is counted



within the L-value bins, if the Saturation is very low (below
4%) just like in [8].

Both histograms are compared with the reference his-
tograms rt and rb and the measurement probability mp(~x)
for CONDENSATION is computed as follows:

mp(~x) = cn
wt pt(ht, rt) + wb pb(hb, rb)

wt + wb
+ u (1)

with wt being the fraction of nonzero bins for both histograms
ht and rt and wb accordingly for the bottom, cn is a normaliza-
tion factor. The probability u reflects the default uncertainty,
i.e. u is a minimum probabilty that there is a face at any
position in the image. The probability pt(ht, rt) is computed
using the Bhattacharya similarity coefficient[8] on the current
and the reference histogram. The additional weighting favors
the top or the bottom histogram depending on the amount
of colored pixels in that image part. E.g. a person wearing a
dark shirt will be tracked mainly by its face color, while a pale
person wearing a wildy colored flower blosom will be mainly
tracked by shirt color.

Fig. 4. Each box represents a particle. The grey value is proportional to the
particle’s probability.

C. Combination

We combine the color histogram tracking and the face
detection as follows.

For each detected face a 3-dimensional Gauss is placed at
that image position and that detected image size in the state
space. Let be ~f = (fx, fy, fs)

T be the position and size of the
detected face. The probability that a face is at position x, y in
the image with size s is

mf
p(~x) = exp(−2

|~x− ~f |2
fs

2 ) (2)

with ~x = (x, y, s)T .
The combined measurement probabilitymc

p(~x) for a particle
is

mc
p(~x) = max(csm

f
p(~x),mp(~x)) (3)

while mp(~x) is the probability from equation (1) and cs is
a scale value, that weights the color histogram tracking with
respect to the face detection. We used cs = 2

3 giving the face
detection more importance.

A typical particle distribution is shown on the left side of
figure (4), where only the top histogram is drawn. Each box
represents a particle, while the grey value is proportional to
the particle’s probability.

The face detection results are also used to initialize and up-
date the reference histogram for the color histogram tracking.
In the beginning the reference histogram is initialized from
the largest face in the image and is updated in later frames
also from the largest detected face. The update is done only
with a fraction cf of the new detected face. Each bin bi in the
reference histogram is updated by

bi = cf b
face
i + (1− cf )boldi

with boldi being the bin values of the old reference histogram
and bfacei the bin values of the histogram of the new detected
face. This has the advantage that false detections do not
mislead the color tracking, while a slow adaption to lighting
changes is possible.

To model the dynamical properties of the system, i.e. the
movement of the users head in the interaction space, a second
order motion model and a diffusion term are applied to the
particles’ positions. The diffusion is chosen larger in the
vertical direction to cover rapid vertical movements, because
the images have a smaller extent in the vertical direction.

The cameras follow the user by paning and tilting, such
that the user is always visible in the center of the image. Each
time a camera moves, the particles have to be moved also. To
change the particles’ positions, the cameras movement has to
be predicted for each frame, while the prediction depends on
the time delay and the rotation speed of the camera.

V. SENSOR FUSION WITH CONDENSATION
The different sensor data from the two face trackers and the

foot tracker are fused via the CONDENSATION algorithm.
With fully calibrated cameras it is possible to calculate the

viewing rays to the face, which is calculated as the weighted
mean of the particles’ position in the images. In addition to
the mean value the weighted variance is sent to the sensor
fusion module.

To track the user’s head CONDENSATION is used with the
state space simply being the 3D head position. We will write
a possible head position as ~x = (x, y, z)T . The probabilites in
the state space for the face viewing rays and the foot positions
are 3D-Gauss, where the Gauss for the face viewing rays are
extended in depth and the foot position Gauss is extended in
height. The Gauss centers of the viewing rays are set to the
average distance in the interaction area, here two meters away
from the camera. The Gauss center for the foot position is set
to be at 1.5 meters height.

The measurement probability function mp(~x) for the head
tracking is the product of the measurement probability of the
face trackers mfi

p (~x) and of the foot tracker mo
p(~x):

mp(~x) =

cn(sf1mf1
p (~x) + uf1)(sf2mf2

p (~x) + uf2)(somo
p(~x) + uo)



where cn is a normalization factor and ufi is the default
uncertainty for the face trackers, i.e. the minimum probability
that the head is anywhere in the interaction area, the lower
this value, there more confidence is taken into the correctness
of the face tracker’s ability to measure where the head is
not. The default uncertainty uo is quite the same for the foot
tracker. Scaling values sf and so are introduced to weight the
importance of the different sensors.

Experiments showed that the face tracker more often loose
track, i.e. the measured viewing ray is wrong, because the
cameras look in the wrong direction. Therefore ufi = 0.05 is
taken much larger than uo = 0.0001 . Also the scale values
sfi are varied each frame depending on the variance of the
face trackers estimated face position.

The measurement functions mfi
p (~x) and mo

p(~x) are general
multivariate Gaussian probability densities:

mi
p(~x) =

1

(2π)3/2|Σ|1/2 exp

(
−1

2
(~x− ~µi)

TΣ−1
i (~x− ~µi)

)

with ~µi being the center of the probability density, Σi is the
covariance matrix reflecting the extensions in the state space
and |Σ| is the determinant of the covariance matrix.

This approach can be easily extended with sensor data from
other cameras or measurement systems.

foot

Fig. 5. A slice out of the measurement probability space

Figure 5 shows a slice (not a projection) in the measurement
probability space at 1.75 meters height seen from top. The face
of the observed person was in about that height, therefore the
viewing rays are visible as a whole. The cameras are standing
at the top of the image. The blob on the left is a slice of the
gaussian representing the foot position, which probably means
that the left foot was detected by the foot tracker.

VI. RESULTS

The processing of the head position requires sensor data
from the face and the foot tracker. As the face tracker
calculates the viewing ray to the face with 12Hz for images
with a size of 320x288 this is the bottleneck of the system. The
rendering part is running asynchronous and its speed depends
only on the scene complexity.

The user can move around in the virtual scene by walking to
the edges of the interaction area. Standing at the front means
moving forward, at the left sides means rotating left etc. with
a center area in the middle, which causes no movement. This
seems to be a rather intuitive way of walking around as you
simply walk in that direction where you want to go. In our
experiments we had about 20 subjects, who didn’t know the
system, navigating in the scene. Most of them understood the
way of moving very fast without much explanation.

It occasionally happens that one of the face trackers lose
track of the face, due to rapid movements or extreme lighting
changes, e.g. when the user walks into one of the projector
beams. In that case the false measurements of the face tracker
lead not to false head positions, as long as the two other
sensors keep track of the user. Only the variance of the
estimated mean 3D head position increases until the lost face
tracker moves back after one or two seconds to a viewing
position, where the head is again in the viewing volume of
the camera.

VII. CONCLUSION AND OUTLOOK

We presented a system for immersive exploration of a
virtual scene, which tracks the user’s head and foot position
only by the use of standard cameras and standard lighting.
The combination of different tracking and detection methods
within a particle system leads to robust and accurate head
estimation even under difficult lighting conditions.

Future work has to increase the overall speed of the system.
This may be achieved for example by applying the face
detector classifier only to the image at the particles’ positions.
Approaches, which extrapolate and predict the users head
position, may also be interesting. Extending the interaction
possibilities by tracking and estimating the hand positions or
the body pose will be the next step.
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