
A Color Similarity Measure for Robust Shadow Removal in Real-Time

Daniel Grest, Jan-Michael Frahm, and Reinhard Koch

Institute for Computer Science and Applied Mathematics
Christian-Albrechts University of Kiel, Germany
{grest, jmf, rk}@mip.informatik.uni-kiel.de

Abstract

We introduce an approach for realtime segmenta-
tion of a scene into foreground objects, background,
and object shadows superimposed on the back-
ground. To segment foreground objects, we use an
adaptive thresholding method, which is able to deal
with rapid changes of the overall brightness. The
segmented image usually includes shadows cast by
the objects onto the background. Our approach is
able to robustly remove the shadow from the back-
ground while preserving the silhouette of the fore-
ground object. We discuss a similarity measure for
comparing color pixels, which improves the qual-
ity of shadow removal significantly. As the image
segmentation is part of a real-time interaction envi-
ronment, real-time processing is needed. Our im-
plementation allows foreground segmentation and
robust shadow removal with 15 Hz.

1 Introduction

Many real time motion capture and tracking sys-
tems rely on an accurate contour extraction like in
[4, 8, 10]. As the contour extraction is usually based
on computing the difference between the current
image and a reference background image, appropri-
ate lighting conditions are necessary. Often these
lighting conditions can not be guaranteed, espec-
cially in environments for interaction purposes, e.g.
when a user acts in front of a display. For good
visibilty of the display the interaction area has to
be rather dark or spot lights have to be used, which
cause significant shadows.

In this contribution we present a novel approach
of extracting a reliable contour under bad lighting
conditions. A similarity measure for comparison of
color images based on the normalized cross correla-
tion is given, which is well suited to eliminate shad-
ows in segmented difference images.

The paper is organized as follows: At first we
give a short description of previous work related to
color segmentation and real time motion capture.
The next section gives an overview of our inter-
action environment and the system’s components.
In section 4 the adaptive threshold method for ini-
tial image segmentation is presented. The method
to detect shadows is described in section 5, where
the similarity measure for color images is discussed
also. Finally we show some results and end with the
conclusion.

2 Previous Work

As stated in [8] the use of subtracting the current
image with a noise free reference image is very
popular for human motion capture systems. In the
article a good overview about motion capture sys-
tems is given and the systems are divided into four
tasks: Initialization, Tracking, Pose Estimation and
Recognition. The goal of taking the difference im-
age is usually to segment a person in front of a static
scene as foreground. The segmented foreground
then gives a reliable silhouette of the person in front
of the camera and is used for contour analysis.

In [3] a difference image is used to find head,
hands and feet via a contour analysis and for ini-
tialization of a person motion model (cardboards).
While the background is assumed to be static,
small changes in lighting can be adapted, though
these changes in lighting have to occur over sev-
eral frames. Overall changes in the scene can be
incorporated into the background model, but only
as long as the foreground extraction and detection
works well. Cast Shadows are not treated explicitly
and don’t seem to occur in the given examples.

In [4] the W4 system is used in an indoor en-
vironment for real time 3D motion capture. The
contour extraction is extended to color YUV-images
and cast shadows are handled explicitly. All pixels

VMV 2003 Munich, Germany, November 19–21, 2003

are classified into background, shaded background,
highlighted background or foreground using various
thresholds.

A 2D contour shape analysis based on difference
images is also used in [11] to initialize a blob model
via identifying head, hands and feet locations. The
threshold for segmentation in the difference image
is calculated for each pixel separately as the covari-
ance of Y UV color values over time. For darker
pixels, which can be generated by shadow, the chro-
matic values U and V are normalized by Y to create
an illumination invariant measure. However, this
measure is not totally illumination invariant, be-
cause RGB values can be converted to YUV by a
linear matrix multiplication.

In [10] contour extraction and analysis is also
used to find head, hands and feet in images, while
the segmentation threshold seems to be set manu-
ally. Shadows don’t occur, because a person moves
in front of a black background.

An overview of many color spaces, their defini-
tion and usability is given in Chapter 1 of [9]. Sim-
ilarity measures for multichannel signals and color
images are given on page 72pp. including many ex-
amples for similarity measures from other works.

An approach for segmentation of color images
taking interreflections and shadow into account is
presented in [6]. Shadow is assumed to reduce the
intensity but does not change the hue or saturation
value. Regions with possible interreflections are de-
tected and intensity histograms are computed. It is
assumed, that in regions without shadow the his-
togram varies continously, while in shadow regions
there are two maxima. This approach is probably
not fast enough for real time purposes, cause of the
region detection.

In our work an adaptive threshold for segmenta-
tion of a difference image is used, which adapts to
lighting changes in only one or two frames. To de-
tect shadows we use a similarity measure for color
pixels, that is similar to the normalized cross corre-
lation (NCC) and therefore needs only one manu-
ally set threshold. In addition the NCC can be im-
plemented efficiently [7] to fulfill real time condi-
tions.

3 System Overview

In [1] a previous version of our system is described
in detail, so we give only a brief description of the

Figure 1: A view of the interaction area with a user
wearing polarized glasses. The overhead camera
can be seen on the top near the ceiling.

system here for completeness and present the en-
hancements in more detail.

The aim of the system is to enable the user to ex-
plore a virtual scene interactively with more immer-
sive techniques than keyboard, mouse, headtracker
or any other cable connected devices.

The virtual 3D-scene is displayed simultaneously
on a stereo backprojection wall in front of the user
and on two displays placed beside the user (side dis-
plays). All these displays are synchronized with the
presented techniques.

The user can interact with the 3D scene by simply
walking throughout the scene. To get the motion
of the user we track the user with three cameras.
One fixed camera is located at the ceiling and two
pan-tilt-zoom cameras are mounted in front of the
user at the bottom of the stereo display (see fig. 1).
This interaction is very natural because there is no
special tracking device fixed to the user’s body.

The system architecture is as follows. The cam-
era at the ceiling (overhead camera) locates the po-
sition of the user’s feet on the floor. This sensor
delivers a 2D position that can be used to initialize
and confine the search range of the two pan-tilt cam-
eras facing the user. If the pan-tilt-zoom cameras
have found the user’s head by searching for skin
colored blobs they track the user’s face. From the
rotation angles of the pan-tilt cameras we triangu-
late the user’s 3D head position in space. This posi-
tion is used to calculate the viewpoint for a virtual
view of the scene. The viewpoint position is trans-
mitted to four framewise synchronized visualization
nodes for the stereo display and the side displays.

All the modules of the system are computation-
ally expensive and demand realtime requirements of

IEEE1394

RS232

RS232

pan, tilt

pan, tilt

x,y

x,y

x,y

Interaction Server

Video

Video

MCast: go

Viewpoint

Visu1

Visu2

ready ready

ready

Visu3

Visu4

MCast: go

Projector 2 Projector 3 Projector 4Projector 1

Pan−Tilt−Zoom Camera 1

Overhead Camera

netsync protocol
cable connection

Pan−Tilt−Zoom Camera 2

sensormessage protocol

Figure 2: Components of the distributed system and
their connections

at least 10-15 frames per second for tracking and 30
frames per second for visualization. We have there-
fore distributed the computational load to different
Linux client nodes. Currently each camera is at-
tached to a separate node with a frame grabber, and
the stereo display is splitted onto four nodes with
fast OpenGL consumer graphics cards for the stereo
display and the side displays. These machines need
a synchronization and intercontrol protocol to meet
the requirements of the realtime interaction system
and to fuse and distribute the inputs. This is han-
dled by the interaction server. All machines are
connected by standard Ethernet network interfaces.
Figure 2 sketches the complete system and the con-
nectivity with the interaction server.

3.1 Foot tracking with overhead camera

The overhead camera mounted at the ceiling is
equipped with a wide-angular lens. It is tilted to
view the whole floor of the interaction area in front
of the display. Furthermore the radial distortion is
compensated during computation. Since the camera
views the planar floor we can use four points on the
floor to compute a homography Hfloor that relates
ground floor scene coordinates and image coordi-
nates.

We use a background image to subtract back-
ground information from the current image. Af-
ter this background subtraction the difference im-
age only contains noise, the user, and the shadows
caused by the user. The noise caused by the cam-
era CCD is canceled out by adaptive thresholding
as presented in section 4.

Now the current image is segmented into fore-
ground which contains only the user and back-
ground which is the interaction area. At last we
have to locate the user’s feet on the floor. We ex-
ploit the fact that, due to the tilted viewing frustum
of the camera, the feet are always visible in the cam-
era even if the head of the user in the interaction area
may not be visible. With respect to the viewing ge-
ometry of the cameras, the user’s feet are always
located on the bottom most part of the foreground.

We identify the user position with the bottom
most foot position in the segmented camera im-
age. The foot position is found by scanning the seg-
mented image from the bottom right to the top left
and searching for the first occurrence of a block of
the size u(x, y), where u(x, y) models the expected
feet size depending on the position (x, y) of the feet
on the interaction area.

The reliability of this pose estimation depends on
the noise in the difference image. To avoid noise
in the estimated position we only update the esti-
mated position if the new position has a distance
from the last estimated position in pixel greater than
a given threshold ω. Normally ω = 2 pixel is a
good choice.

It can be assumed that the feet move on a plane,
namely the floor, so the above mentioned homog-
raphy Hfloor from the camera coordinates to the
floor coordinates is applied to get the position of
the user’s feet on the floor. These 2D coordinates
are submitted to the interaction server for further
processing.

4 Foreground Segmentation

To detect foreground regions we use a background
reference image and calculate the difference image
with the current one. To acquire a background refer-
ence a ground truth image is incorporated as a mean
image of a sequence of the interaction area without
the user.

For a given fixed noise level the length of the se-
quence can be computed [1] according to the noise
variance in the current image. However we usually
use a length of 16 frames, which gives good results.
To speed up processing and to reduce noise in the
image we process subsampled images of 320x240
pixel size.

The segmentation of the foreground is often ob-
tained by applying a threshold to the difference val-

ues. The choice of the threshold parameter varies
in each approach, while it usually depends on the
camera noise. In W4 [3] the noise is measured sep-
arately for each pixel by calculating the minimum,
maximum and the maximal interframe-difference
over a certain time intervall. In Pfinder [11] the vari-
ance of the noise is measured for each pixel as the
covariance matrix of the (Y,U,V)-vector over time.

We take a different approach which has certain
advantages. Instead of calculating the variance for
each pixel over time, we measure the variance of
the pixel noise over the whole difference image
each frame, leaving the segmented foreground re-
gion out.

Let d(x, y) = r(x, y)−a(x,y) be the difference
image value, r(x, y) the background reference im-
age intensity and a(x, y) the current image intensity
at image positions (x, y). The variance of noise in
an image with size M × N is,

σ
2 =

1

MN

M−1
X

i=0

N−1
X

j=0

(d(i, j) − d̄)2 (1)

where d̄ is the mean value of the difference im-
age. For efficient computation this equation can be
rewritten as

σ
2 =

1

MN

M−1
X

i=0

N−1
X

j=0

d(i, j)2 −

1

MN

M−1
X

i=0

N−1
X

j=0

d(i, j)

!2

Assuming a Gaussian distribution of noise we
set the segmentation threshold to 2σ2. Therefore
97.5% of noise are in the segmentation intervall.
Each pixel belongs to the foreground, if

|d(x, y) − d̄| > 2σ
2
. (2)

The main advantage of this approach is the prop-
erty of fast adaption to lighting changes, because
the new threshold is computed for each frame and
is independent from previous frames. Even large
changes of the overall brightness can be adapted, as
the mean value in the difference image incorporates
such intensity variations.

However, it is very important to calculate the
new threshold for the background only and not
for shadows or parts of the person, because a suf-
ficiently large region of not detected foreground

leads to a large variance, which leads to less de-
tected foreground in the next frame. Accumulating
even larger variances until almost everything is de-
tected as background. To overcome this problem
we assume for initialization that only background
is visible. In later steps a bounding box around all
thresholded pixel can be spared out to calculate the
new threshold. In our environment the camera is
mounted such that we can assume nobody is appear-
ing in the lower five percent of the image. Therefore
we calculate the threshold only in this part of the
image.

Overall changes in the scene are not treated, it
is assumed to be static. However it is easily possi-
ble to update the background reference if only slow
changes in the background scene occur.

The thresholding results in segmented images
like shown in figure 3, where the segmented shape
of the person is visible. The casted shadows are part
of the foreground too, which makes a contour anal-
ysis very difficult.

Figure 3: current image and segmented image

5 Shadow Removal

To distinguish the shadows from the person in the
segmented image we assume the following proper-
ties:

• a shadow pixel is darker than the correspond-
ing pixel in the background image,

• the texture of the shadow is correlated with the
corresponding texture of the background im-
age.

The shadows are removed in the segmented im-
age by the following steps.

At first we erode single segmented pixels, be-
cause these pixels are usually caused by noise, but
were not rejected by the previous thresholding.

Then for each pixel in the current image, which
is darker than the corresponding pixel in the refer-

ence image, we calculate a 7 × 7 normalized cross-
correlation with the reference image.

5.1 Correlation of intensity images

To measure the similarity of image parts it is pos-
sible to calculate the cross correlation over a given
window size [5]. Usually brightness invariance is
desired, as given by the cross covariance, which is
the average-free cross correlation.

In this work we are only interested in compar-
ing pixel values at the same positions in two im-
ages, and will therefore give the correlation equa-
tions only for this special case. The cross covari-
ance with window size M × N for two images a, b

at image position (x, y) is then defined as,

CCa,b(x, y) =
1

MN

X

i,j

(ai,j − ā)(bi,j − b̄).

where i ranges from (x− M−1
2

) to (x+ M−1
2

) and
j from (y − N−1

2
) to (y + N−1

2
). The ā, b̄ denote

the average of the M ×N window for image a and
b.

The cross covariance is brightness invariant, but
sensible to changes in contrast. To achieve contrast
invariance also, the correlation is normalized by the
variance in each window, which leads to the well
known normalized cross correlation (NCC). For ef-
ficient computation the NCC can be written as,

=

P

i,j

aijbij − 1
MN

P

i,j

aij

P

i,j

bij

v

u

u

t

P

i,j

a2
ij − MNā2

!

P

i,j

b2
ij − MNb̄2

!

.

(3)
with

ā =
1

MN

X

i,j

aij

!

For shadow pixels this correlation is near to one,
so we eliminate the darker pixels in the segmented
image, if the NCC of the pixel in the current image
and the pixel in the reference image is greater than
a threshold θNCC . After removing pixels with the
NCC thresholding, we apply a 3x3 closening oper-
ator to fill small holes in the contour. This method
is already presented in [2].

Figure 4 shows the elimination of shadow pixels
for θNCC = 0.4. Most of the shadow pixels are

eliminated, but significant parts are left. Further re-
ducing of θNCC eliminates more of the shadow, but
removes parts of the person’s shape also. This is
due to the small correlation window size, which is
necessary for fast calculation. In regions, which are
near to homogeneous, the NCC tends to vary heav-
ily, making it very difficult to distinguish clothes
without texture from shadow.

Figure 4: segmented image with the applied thresh-
old (left) and image with removed shadow based on
NCC (right)

5.2 Correlation of color images

To improve the quality of the shadow removal, we
want to take color information into account.

The idea is to use color information, if the inten-
sity values alone give no correlation information.
This happens if the observed region is, for exam-
ple, homogeneous. To split the color information

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

Hue

Saturation

Lightness

Figure 5: The biconic HSL space.

from the brightness values we represent the color
image in the biconic HSL space (Hue, Saturation,

Lightness, see figure 5) [9], which has the follow-
ing properties:

• The hue value in the HSL space is the an-
gle in the chromatic plane around the achro-
matic axis of the RGB space. Therefore the
hue value is independent from the brightness.

• The saturation S of the color is computed as
max(R,G, B)−min(R, G, B) and is there-
fore not brightness independent. A normaliza-
tion of the saturation value gives brightness in-
dependence, as for the cylindrical HSV color
space, but is not suited for color information
processing, because dark image regions, can
have maximum saturation in spite of the low
energy consumed from the scene. In that case
the saturation varies heavily in dark regions
due to noise, which is of course not desired.

• The intensity value L is calculated as L =
max(R,G,B)+min(R,G,B)

2
. Other formulas are

possbile also but don’t give the biconic repre-
sentation as in figure 5. For example the inten-
sity value can be calculated as a combination
of red, green and blue like in the YUV-color
space, or as the average of R,G, B.

The projection of the whole RGB-space onto the
chromatic plane is a hexagon as shown in figure 6.
To measure similarity we calculate the HSL space
not in polar coordinates but use the projection of the
(R,G, B) vector onto the chromatic (H,S)-plane
to calculate the Euclidean values of hue and satu-
ration. We will denote the representation in Eu-
clidean coordinates, with (h, s), calling the color
space where H, S are converted to Euclidean coor-
dinates as the hsL color space. The projected h, s

part is scaled such that its length equals the satura-
tion of the HSL color space. We propose for the cor-
relation of two color pixels c

a = (ha, sa, La) and
c
b = (hb, sb, Lb) the scalar product c

a
c
b. This

is a rather intuitive way to compare multichannel
signals and is one possible way to define similarity,
compare with page 72pp. of [9].

The scalar product of two different (h, s, L) vec-
tors gives a high correlation for color pixels, which
have a similar hue (small angle between them) and
which have high saturations. As the saturation of
the color is equivalent to the length of the (h, s) vec-
tor, color pixels have a small correlation, if one of
their saturations is low. Therefore the scalar prod-
uct is well suited to measure the correlation of color
pixels.

Red

GreenBlue

s

h

b

a

c

c

Figure 6: The chromatic plane of the hsL color
space.

When applying it to the cross-covariance, one has
to recognize that the cross-covariance is average-
free. As we want to measure the similarity of two
color regions, we apply the average subtraction only
to the intensity values (L).

The scalar product for (h, s) is calculated sepa-
rately from the intensities and negative results are
set to zero, which regards the fact that two col-
ors with an hue angle of more than 90 degrees be-
tween them, are interpreted as not similar by hu-
mans, while blue is usually not seen as more unlike
from yellow than it is from green.

We define the color-cross-covariance (CCC) over
a window with size M × N for two color pixel
c
a
xy, cb

xy from two images a, b at an image position
(x, y) as,

CCCa,b(x, y) =
1

MN

X

i,j

(ca
ij •c

b
ij)− L̄aL̄b (4)

with

c
a
ij • c

b
ij = (ha

ij , s
a
ij) ◦ (hb

ij , s
b
ij) + L

a
ijL

b
ij (5)

where i ranges from (x−M−1
2

) to (x+ M−1
2

) and j

from (y−N−1
2

) to (y+ N−1
2

) and L̄a is the average
intensity in image a over the M × N window.

The ◦ operator denotes the scalar product, with
negative values set to zero.

The extension of the NCC for color images is
straightforward. The normalization factor is again
the overall variance of the intensity L in each win-
dow to achieve contrast invariance on the intensity

channel. The color correlation values (hue and sat-
uration) are only normalized such that the result-
ing color-normalized-cross-correlation (CNCC) is
in [−1...1].

We define the CNCC over a window with size
M × N for two color pixel c

a
xy, cb

xy at an image
positon (x, y) as,

CNCCx,y =

P

i,j

(ca
ij • c

b
ij) − MNL̄aL̄b

√
V ARa V ARb

(6)

with

V AR
k =

X

i,j

(ck
ij • c

k
ij) − MNL̄k

2

!

where i, j, L̄a, L̄b as above and k ∈ {a, b}.
The saturations of the colors have the same scale

as the intensities, such that the contribution of hue
and saturation together has as much influence on the
resulting CNCC value as the intensity alone. This
gives a weighting of color (hue and saturation) to
intensity information as 1:1, which can be easily
adapted if necessary.

The CNCC has the property to be identical to the
NCC if no color values are present (the saturation
of the color is zero). But in regions, where the in-
tensity value alone gives no correlation information,
the CNNC measures the color similarity of both re-
gions, whereas the resulting CNCC is in [0..1] for
such regions, because the negative values of the
scalar prodcut are set to zero.

The additional computational cost of the CNCC
versus the NCC for intensities are the three scalar
products c

a
ij • c

b
ij for each pixel (equation 6) and

the conversion into the hsL space. Also three val-
ues have to be accessed in memory for each pixel
instead of one for intensity images.

6 Results

The use of the CNCC improves the shadow removal
significantly as visbile in the bottom right of fig-
ure 7, where the CNCC thresholding eliminated the
segmented shadows, but preserves the shape of the
person acting in front of the display. The use of
the NCC preserves the shape of the person also, but
removes only parts of the shadow as visible in the
bottom left of figure 7. The holes in the segmented

shape are due to the rather small 3x3 closening op-
erator we use, if desired, larger operators can be ap-
plied to fill all holes, but have of course a greater
computational cost.

Figure 7: Top row: current image (left) and seg-
mented image (right). Bottom row: segmented im-
age with removed shadow based on NCC (left) and
CNCC (right).

Figure 8 shows three frames of an image se-
quence, where the proposed method to remove
shadows in tresholded difference images is applied.
The shape of the user wearing dark blue jeans and a
dark red pullover is reliable extracted in spite of the
poor lighting conditions. On the left side the cur-
rent image is shown and to the right the result after
removing shadow pixels which have a CNCC cor-
relation value larger than θCNCC = 0.4 The border
of N

2
pixels is not processed to speed up the com-

putation, where N × N is the size of the CNCC
window. The foreground segmentation runs with 8-
20Hz depending on the amount of darker shadow
pixels. The used machine was a 1,2GHz Athlon
linux system and the image size was 320 × 240.

As the CNNC and NCC measure the textural
similarity of two regions, a user wearing textured
clothes with multiple colors is more easily to dis-
tinguish from the background. Also a colored tex-
tured background is better suited for the CNCC. The
results show that even without textured clothes or
background our system is able to robustly remove
shadows in thresholded difference images to extract
the users silhoutte.

Figure 8: Three frames of an image sequence. Orig-
inial image on the left and segmented image with
removed shadow using the CNCC on the right.

7 Conclusion

We presented an adaptive thresholding method for
the segmentation of an user in front of a display.
Furthermore we introduced a new similarity mea-
sure for color images that uses a HSL color space
to seperate the color from the intensity informa-
tion. This new color NCC was applied to improve
the shadow removal technique for segmented differ-
ence images.

The next step is to analyze the developed color
normalized cross correlation for the use in other ap-
plications like stereo matching. Further on we are
going to compare it with other similarity measures
like the content model family of measures [9].

To speed up the computation more efficient con-
version routines to the hsL are needed and an ap-
proach which makes the computation time inde-
pendent from the amount of darker pixels is desir-
able. This can be achieved for example with a pre-
computation of the NCC values for a bounding box
around the segmented foreground using a sliding
window. As long as the bounding box size doesn’t
vary too much from frame to frame, the bounding
box from the previous frame can be used to pre-
compute the NCC values for the current frame.

References

[1] J.F. Evers Senne, J.M. Frahm, F. Woelk,
J. Woetzel, and R. Koch. Distributed realtime
interaction and visualisation system. In Vi-
sion, Modeling, and Visualization VMV: pro-
ceedings, Nov. 2002.

[2] Jan-Michael Frahm, Jan-Friso Evers-Senne,
and Reinhard Koch. Distributed interaction
processing and visualization of 3d scenes in
realtime. In Proc. of ISPA, Rom, Italy,
September 2003.

[3] Ismail Haritaoglu, David Harwood, and Larry
Davis. W4: Who? when? where? what?
a real time system for detecting and tracking
people. In Proceedings of Third IEEE Inter-
national Conference on Automatic Face and
Gesture Recognition, Nara, Japan, 1998.

[4] T. Horprasert and I. Haritaoglu et al. Real-
time 3d motion capture. In Proc. Perceptual
User Interfaces, pages 87-90, 1998.

[5] Bernd Jähne. Digital Image Processing, 5th,
revised and extended edition. Springer Verlag
Berlin, 2002.

[6] Andreas Koschan. Segmentation of color im-
ages for the minimization of interreflections.
In Domanski and Stasinski, editors, Proc. of
4th Int. Workshop on systems, Signals and
Image Processing, pages 191–194, Poznan,
Poland, May 1997.

[7] J. Lewis. Fast normalized cross-correlation. In
Proc. of Vision Interface, 1995.

[8] Thomas B. Moeslund and Erik Granum. A
survey of computer vision-based human mo-
tion capture. In Proc. of Computer Vision and
Image Understanding, volume 81, pages 231–
268, 2001.

[9] K.N. Plataniotis and A.N. Venetsanopoulos.
Color Image Processing and Applications.
Springer Verlag, 2000.

[10] Rin-Ichiro Taniguchi, Satoshi Yonemoto, and
Daisaku Arita. Real-time human motion anal-
ysis for human-machine interface. In Pro-
ceedings of Advanced Visual Interfaces, AVI,
Trento, Italy, May 2002.

[11] Ch. R. Wren, A. Azarbayejani, T. Darrell,
and A. Pentland. Pfinder: Real-time track-
ing of the human body. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
19(7):780–785, 1997.

